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ABSTRACT 

This work introduces the use of optimal control methods for path planning and 

control of autonomous vehicles in an obstacle-rich environment.  Traditional techniques 

harbor non-optimal, closed architectures primarily derived at a time when computational 

complexity could significantly hinder overall system performance.  Advancements in 

computing power, miniaturization, and numerical methods permit the utilization of online, 

optimal path planning and control, thereby improving system flexibility and autonomy.  

The backbone of this concept is state-of-the-art optimal control techniques involving 

pseudospectral methods and sequential quadratic programming.  Although this research 

focuses on a robotic car or Unmanned Ground Vehicle (UGV), several systems, including 

an Unmanned Aerial Vehicle (UAV) and a pendulum on a rotational base, are detailed 

for the purpose of illustrating the technique’s modularity.    With respect to the UGV, 

optimal control methods permit the optimization of maneuver parameters while 

accounting for complex vehicle kinematics and workspace obstacles, represented as 

dynamic and path constraints respectively.  The path constraints are modeled such that an 

obstacle of any shape or size can be included.  Maneuvering trajectories are first 

generated in an open-loop architecture, followed by an application of these same 

techniques in feedback form.  Lastly, model fidelity is increased to improve control over 

vehicle behavior and closed-loop performance and a local knowledge scenario is 

evaluated.  
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I. INTRODUCTION  

Autonomy has long been a goal for numerous scientists, engineers, military 

planners, and science fiction enthusiasts, and in spite of their best efforts, many advances 

remain out of reach.  The word often found side-by-side with autonomy is robotics.  

Robots have mastered specialized, repetitive tasking, and in this role they have assisted 

humans by providing information, accomplishing tedious work, and performing 

dangerous jobs.  Yet, despite the advances in robotics, the transfer of these technologies 

into the commercial domain remains minimal.  There are three reasons for this long 

gestational period.  First, these technologies are prohibitively expensive.  State-of-art 

robots are found in universities and government laboratories primarily because they are 

the only ones who can afford them.  Second, they are complex.  Of course, this fact feeds 

the first issue since difficulty is often related to price, but complexity also refers to the 

fact that it is difficult to program a robot to accomplish even ten repeatable tasks safely.  

Thus leading to the third and final reason why robot technology has not proliferated the 

commercial market; they are not overly useful.  Unlike cartoon depictions of robotic 

maids that can cook you eggs while they wax your car and shine your shoes, the $300 

Roomba® can only vacuum a room.  The key is that true functionality is not possible 

without autonomy. 

Most scientists and market experts agree that it is only a matter of time before 

robot and autonomy technologies advance to the point where their products can be truly 

useful at a reasonable price.   This will be accomplished by software packages and 

systems that can have a multi-functional portability and a dynamic adaptability.  While 

there are several areas within the robotics discipline that require attention, the focus of 

this work is the area of path planning and motion control.  The intent of this research is to 

show how optimal control methods can accomplish the path planning and motion control 

problems in unmanned or robotic systems and simultaneously improve system autonomy.  

It will be shown that these techniques hold the potential for mathematically optimal 

solutions while possessing the ability to account for dynamic and kinematic constraints, a 

characteristic that other techniques cannot demonstrate.  Previous stereotypes of 

optimization techniques are that they are too computationally intensive to be applied in 
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an online manner, but this work evidences the contrary.  In addition, optimal control 

methods enjoy an inherent portability; they are rapidly adaptable to new obstacle 

environments, robot conditions, and even entirely different dynamical systems.  This 

means that one system can be used to drive a car down the highway, maneuver through a 

parking lot, and eventually parallel park, and, incidentally, it can also maneuver the car 

safely in the event of a flat tire.  Optimal control methods provide functionality through 

autonomy.   

This thesis is organized into six subsequent sections.  The Section II details the 

problem definition including, what problem is solved, motivation, problem characteristics, 

problem formulation, and how it was solved in the past.  Section III begins the analysis 

and results portion of the thesis by testing the optimal control techniques on a tricycle 

model.  Section IV is the heart of this work, and it pertains to a four-wheeled car model, 

i.e. unmanned ground vehicle.  Planning and control methods are simulated for this 

model in terms of open-loop and closed-loop architectures, demonstrating techniques 

used to handle uncertainty.  Section V applies the same techniques to a three-dimensional 

Unmanned Aerial Vehicle (UAV) model and Section VI to an inverted pendulum.  These 

examples illustrate the portability and capability of these techniques to handle  

challenging dynamics.  Section VII provides future work and conclusions. 
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II. PROBLEM DEFINITION 

A. MOTIVATION 
The advances in modern computing, specifically relating to speed and cost, are 

leading to an infiltration of processing power into everyday life.  Revolutionizing 

information flow, automating previously human tasks, and improving process 

performance are only a brief list of significant impacts that computers have made to date.  

A revolution in controls engineering and application is now on the horizon.  Many of the 

control techniques studied and implemented today are the remnants of methods 

developed when electronic computers were cumbersome, expensive, and impractical for 

onboard application.  Changing the method of control application will prove evolutionary 

for both military and civil applications.  

The area of robotics relies heavily on a confluence of computing and controls 

among other disciplines.  In the 1960’s computer coordinated cameras and mechanical 

arms were incapable of reliably accomplishing tasks that were simple for a toddler.  Forty 

years later Sony was able to successfully mass-produce and sell AIBO robot pets despite 

a price greater than $1000 [1]. These small, dog-shaped robots incorporated an onboard 

computer and sensors thereby enabling the owner to operate their pet with a high-level 

language remotely or autonomously.  Outside of private industry, many government 

organizations have staked a significant investment in robotics.  Unmanned and 

autonomous vehicles are crucial to the National Aeronautics and Space Administration’s 

(NASA) plans for the “Moon, Mars, and Beyond.”  The use of robotic missions on the 

Moon and Mars will help to provide enabling information while minimizing the risk and 

cost of eventual human exploration missions [2].  In 1997 the Mars rover Sojourner was 

constrained to remain near its lander; motion plans were generated offline on Earth and 

uploaded.  The Mars Exploration Rovers (MERs), pictured in Figure 1 [ 3 ], were 

developed with greater autonomous capability, thereby enabling more valuable scientific 

and exploratory missions to be accomplished.  Spirit and Opportunity continue to 

function far beyond their intended mission, at significant distances from their landing 

sites, and they provide data not obtainable by human endeavors now.   
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Figure 1 Mars Exploration Rovers (From Ref. 3)  

 

The Department of Defense (DoD) also places an emphasis on the development of 

unmanned and autonomous vehicle technologies.  Air, ground, surface, and underwater 

vehicles that are unmanned or autonomous present operational advantages to battlefield 

and unit commanders.  These technologies remove soldiers from harmful missions while 

providing equal intelligence, reconnaissance, defense, and potentially offensive 

capabilities.  The National Defense Authorization Act of 2001 states that the Armed 

Forces shall strive to field technologies permitting the employment of unmanned vehicles 

in greater numbers.  The Act goes further to mention that by 2010 one-third of the 

operational deep strike combat aircraft be unmanned and by 2015 one-third of the ground 

combat vehicles be unmanned [4].  The purpose of the Defense Advanced Research 

Projects Agency’s (DARPA) Grand Challenge, an autonomous ground vehicle 

competition, is to precipitate the systems and expertise necessary to field the unmanned 

vehicles needed in the military.   

Autonomous vehicles and autonomous behaviors are enabled by numerous 

technology areas including but not limited to: mission planning and reasoning, sensing, 

mapping, recognition, path planning, trajectory following, and motion control.  While all 

of these areas benefit from advances in computing technology, the focus of this research 

is in exploring the advancements in the fields of path planning and trajectory following.  

The methods demonstrated within have the capability to be implemented in the 

autonomous or unmanned vehicles of the future to provide greater autonomy with 
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optimum performance.  Even when this technology is incorporated into an unmanned, 

remotely controlled vehicle such as a common UAV, greater vehicle autonomy facilitates 

less human oversight and involvement thereby permitting a reduction in operational costs.   

Discussing these new methods of controlling vehicles, describing how these new 

control methods apply to autonomous vehicles, and demonstrating their ability to 

improve vehicle performance is the purpose of the remainder of this paper.  Numerous 

vehicles and models can be extracted from previous research for this analysis, and true to 

this statement, several different models were evaluated and will be discussed.  However, 

the main thrust of this thesis focuses on a car simulation.  The rationale for utilizing the 

car lies in its direct relevance to civil and military applications and its relatively 

challenging dynamics. 

B. CONSTRAINTS AND KINEMATICS 
The four-wheeled car is one of the most well studied models with respect to 

kinematics and path planning; a logical research topic given its influence and profusion 

into human life.  However, the car presents a challenge for engineers due to the nature of 

the constraints inherent to the system.  Anyone who has attempted to parallel park is well 

aware of the fact that, for most cars, only the front wheels are capable of turning and the 

back wheels must roll without slipping.  While this fact constrains the motion of a car, it 

does not necessarily inhibit the feasible states - position and orientation - that a car can 

achieve, and this is representative of a nonholonomic constraint.  Holonomic constraints 

can be expressed solely as a function of the state variables and possibly time, and each 

linearly independent holonomic constraint reduces the number of degrees of freedom or 

number of variables needed to wholly describe a system.  Nonholonomic constraints, on 

the other hand, cannot be expressed entirely as a function of the state variables and times; 

the constraint equation will include derivatives of the state variables.  As it is the case 

with the car model, nonholonomic constraints do not lower the degrees of freedom of the 

system. 

The kinematic model of the car used throughout this research is shown in Figure 2.  

The state vector is composed of two position variables and an orientation variable,  
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Equation (1).  The x-y location of the car represents the current position of the center 

point of the rear axle.  The car’s orientation is measured with respect to the horizontal 

axis and is presented as the state variable theta.   

 
x

x y
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (1) 

The car’s control variables, Equation (2), include velocity and phi, the angle of the 

steering wheels with respect to the car’s heading.   

 min max

min max

: ( )
: ( )

v v v t vv
u where u

tφ φ φ φφ
≤ ≤⎧ ⎫⎡ ⎤

= ∈ = ⎨ ⎬⎢ ⎥ ≤ ≤⎣ ⎦ ⎩ ⎭
U  (2) 

 
 

 
Figure 2 A Car Model with Front-Wheel Steering. 

 

The constant ‘L’ defines the distance between the forward and rear axles, and the variable 

rt reflects the instantaneous turning radius.   

Significant items easily overlooked in Equation (2) are the limits placed upon the 

control variables.  The angle of the forward wheels with respect to the car’s heading, 

hence forth referred to as the steering angle, can not be greater than ±90° for both 
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computational and practical reasons.  The maximal limit of the steering angle places a 

restriction on the minimum turning radius, which can be determined by Equation (3). 

 ,min
maxtant

Lr
φ

=  (3) 

Several variations of the steering angle and velocity limits were considered previously [5].  

There are two well-known and explored variations.   The Reeds-Shepp car demonstrates 

only three distinct speed capabilities – forward maximum, stop, reverse maximum – as 

displayed in Equation (4). 

 { }
min max

: 1, 0, 1

: ( )

v v
u

tφ φ φ φ

−⎧ ⎫=⎪ ⎪∈ = ⎨ ⎬
≤ ≤⎪ ⎪⎩ ⎭

U  (4) 

The Dubin’s car is similar but lacks the capability to move in reverse, Equation (5).  

 { }
min max

: 0, 1
: ( )

v v
u

tφ φ φ φ
⎧ = ⎫

∈ = ⎨ ⎬
≤ ≤⎩ ⎭

U  (5) 

These approaches are neglected in this analysis for the sake of reality, as most cars are 

capable of throttling velocity.  In addition, the car is permitted to move in a backwards 

direction. 

The nonholonomic constraint of rolling without slipping described previously is 

derived in [5] and presented in Equation (6).   

 sin cos 0x yθ θ− + =  (6) 
This constraint leads to the kinematic equations of motion appearing in Equation (7). 

 
cos
sin

tan

v
x v

v
L

θ
θ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7) 

 This problem is simple in appearance, yet its non-linearity creates difficulties for 

many path planning methods.  It is noteworthy that in the current configuration the 

controls can change instantaneously.  This characteristic may produce results that are 

undesirable for a specific robot, and in that case the velocity could be included as a state 

variable and the acceleration becomes the control variable.   
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C. PREVIOUS APPROACHES 

1. Overview 

Path planning problems have been explored with great intensity for several 

decades.  In general, path planning problems are under-determined and often non-linear 

in their truest form.  For these reasons, planning methods fall into four generic categories 

including: completeness, optimality, computational complexity, and scalability [5-7].  

Completeness refers to a method’s ability to guarantee a successful solution if one does 

exist, and likewise report if no solution is possible.  Optimality specifies the ability of a 

method to select a path that best fits a predetermined criterion.  Computational 

complexity provides a relative value for the amount of time a method requires to 

determine a solution, and this tends to delineate the method’s ability to be used in an 

online or offline manner.  Scalability is a method’s portability to different or more 

dimensionally complex systems.  Permissible problem complexity is a characteristic 

implicit to completeness and optimality.  In a simple example where a method is 

incapable of handling a non-linear system of equations, completeness and optimality 

designations for that method carry less weight due to the system’s inaccuracy in problem 

representation. 

In the past, real-life applications of path planning methods led to one last defining 

characteristic, the ability to function with local information or the restriction to global 

information.  These terms have often experienced usage in parallel to the offline versus 

online classification, due to a relatively longer computation time.  The distinctiveness of 

global and local methods has blurred with the progression of modern computing.  If an 

offline, global information planner can run at a sufficient speed, it can be implemented in 

a feedback loop to provide an updated solution as new sensor information becomes 

available.  This concept is a centerpiece of this research and the ability to utilize this 

technique is reliant equally upon the idiosyncrasies of the system controlled, the speed of 

the planner, and the speed of the computer.   

Having defined the four general evaluation criteria for each of the planning 

methods, the purpose of the following sections is to provide an informational background 

to the language used in various planning methods and then provide a quick survey of the  
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current state of planning methods.  The primary focus of this assessment is the 

application planning methods to the general car or Unmanned Ground Vehicle (UGV) 

problem defined before.   

2. Background 
Before any of the planning methods can be described in detail, it is necessary to 

specify some of the concepts which are fundamental to their use. 

Many robot and manipulator problems are seen visually in a workspace but are 

more easily handled mathematically in a configuration space [6].  The difference between 

the two is most simply described by an example.  For a two-link system, the workspace is 

the left-half of Figure 3 which shows the system as any person would see it in real life.  

In this case the objective is to place the end of the second link into the goal position 

without hitting the obstacle with any portion of the linkage system.  The right-half of 

Figure 3 displays the configuration space representation of the same problem; it is the 

space of all possible states of the system.  The two-link system is composed of many 

particles, which occupy a significant volume in the workspace; in contrast, the system’s 

representation in configuration space requires one point.  Any state or configuration that 

would cause the two-link system to contact the obstacle in the workspace is eliminated 

from the free configuration space.   

 
Figure 3 Two Link System in Work Space (left) and Configuration Space (right). 
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This is a straightforward example; however, the dimension of the configuration space 

increases with the number of degrees of freedom of the system studied.  Also mapping 

obstacles from the workspace to the configuration space can become an intensive 

undertaking.   

3. Survey of Previous Methods 
Numerous planning methods have been developed and continue to evolve for the 

purposes of vehicle motion.  Detailed development and analysis of the various methods 

are included in the listed references [5, 6, 7].  These methods include artificial potential 

fields and distance transformations, roadmaps, cell decompositions, sample-based 

algorithms, analytical approaches, and optimal control methods. 

Artificial potential fields have stimulated interest for use in conjunction with the 

online, obstacle avoidance problem for over thirty years [8].  The fundamentals behind 

potential functions are simple; they only need to be real-valued and differentiable over a 

configuration space.  Similar to any real-world potential field, the gradient of the 

potential can be thought of as a force.  A more intuitive visualization tool is to picture the 

robot as a positively charged particle in configuration space.  The potential functions 

provide forces such that obstacles emit positive charges and the goal emits a negative 

charge.  Naturally, the particle is repelled from the obstacles and drawn to the goal, and 

mathematically it follows the path of the steepest gradient.  With this simplistic approach, 

it is possible to plan the robot’s path in an online, robust manner with local information.   

This approach suffers from several drawbacks however.  First, the particle can get 

stuck at a local minimum in the configuration space that does not correspond to the goal – 

a completeness problem.  This concern requires addressing in each application of 

potential functions.  Second, optimality criteria are difficult to satisfy, and third 

nonholonomic constraints and vehicle kinematics are difficult to accommodate.  The first 

concern has been addressed in several ways.  Reference [9] combines the potential field 

with a distance transform which is another potential field method based on mapping the 

space to a grid and determining the distance from every position to the goal.  This method 

can provide near optimal results but tends to scale and handle nonholonomic constraints 

poorly.  References [10, 11, 12] solve the problem by imposing random motion and an 

escape force during local minimum conditions.  More generally [6, 7] describe the 
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possibility to develop a navigation functions that contain only one minimum, at the goal.  

However, these functions can only be created with global information, thereby sacrificing 

one of the method’s benefits.  Solution optimality, with respect to distance traveled, was 

improved in [12, 13] by placing tunable gains on the repulsive forces representing the 

obstacles, but this displayed only moderate improvement and portends a lack of 

portability particularly to other forms of optimality.  Lastly, potential functions have been 

applied to nonholonomic systems and problems with motion constraints.  Reference [14] 

attempts to apply the potential function method to multiple, nonholonomic vehicles but 

limits the research to a simplistic tricycle model.  Reference [11] applies potential 

functions to the high-speed navigation of UGVs such that dynamic constraints – vehicle 

side slip and rollover – are satisfied.   

In general, potential functions provide a valuable, robust, online path planning 

method, but it lacks the capability to produce an optimal result and vehicle constraints 

remain difficult to manage. 

Roadmaps are most easily described by their name.  When a driver is planning a 

long trip via a map, he or she will typically plan most of the trip over the highways.  Then 

the only thing left to do is to find fast access to the highway from the starting location and 

from the highway to the finish.  These three actions summarize the three actions involved 

in Roadmap planning.  Routes or “highways” traverse the configuration or work space.  

The first task is to plan a route from a node near the start to a node near the finish.  Once 

this is accomplished, the only remaining task is to plan a route from the start to the 

“highway” and from the “highway” to the finish.  In their general form, Roadmaps 

require global information and in that case, they can generate a path that is optimal with 

respect to distance traveled [6].  Roadmaps are efficient once the roads are created, and if 

the environment is static, the same roadmap could be used throughout a path.  In the case 

of local information, the obstacles are not known a priori, and Roadmap implementation 

is more challenging.  Several approaches enable the formation of roads in the case of 

local or time variant information including: sensor-based construction, discretization, 

graphical methods, or sampling methods [15, 16, 17].  Sampling methods appear to be 

more widely used now, and they create roads by randomly generating and connecting 

nodes in the configuration space.  During the road construction phase, obstacles are 
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accounted for and infeasible nodes or paths are disallowed.  One disadvantage of random 

and probabilistic methods is the difficulty in ensuring solution completeness, so even a 

solution is infeasible the robot may be unaware [18].  [17] uses a predefined set of 

probabilistically generated roadmaps in the work space to manage a dynamic 

environment by simply activating and deactivating particular nodes of the roadmap.  

Without accounting for vehicle or system dynamics, these methods cannot guarantee 

optimality by means other than distance, and velocity, actuator, and nonholonomic 

constraints are hard to take into account.  This means that the resulting path may create a 

non-trivial control problem.  Computational complexity is problem and implementation 

method dependent. 

Cell Decompositions represent free space by an association of various shaped 

regions known as cells.  The boundaries of the cell could be based upon graphical or 

boundary information or assigned arbitrarily, and often a common cell shape is used 

throughout the space to avoid greater memory requirements.  Cells that share a common 

boundary are referred to as adjacent and a map or graph of adjacency information permits 

the planning of a path from the starting location to the finish.  Often an optimal search 

method such as the A* algorithm is implemented such that the final solution has a 

minimal distance.  By discretizing the workspace or configuration space, the optimality 

of the solution is only truly valid as the resolution of the grid cells becomes high.  This 

results in an adverse computational burden unless a quadtree or octree data structure is 

implemented [19].  As with Roadmap methods, recent advances in this area have proved 

the value of incorporating random sampling methods [20] and probabilistic methods [18, 

21].  These methods can be far more efficient, especially for high degrees of freedom and 

challenging obstacle arrangements, than normal deterministic methods.  On the other 

hand they can suffer from a lack of completeness.  In general, not all Cell Decomposition 

methods take into account the vehicle nonholonomic and actuator constraints.  For this 

reason, optimality criteria are often limited and the control problem can become 

challenging.   

As is evidenced by portions of the preceding paragraphs on Roadmaps and Cell 

Decompositions, sampling methods for path planning are becoming very popular.  Their 

attractiveness is due to their portability to various and intricate problems including 
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numerous degrees of freedom, complex vehicle constraints, and various workspace 

constraints.  While not complete, these methods are frequently either probabilistically or 

resolution complete, meaning that completeness is guaranteed as computation time 

approaches infinity or as grid size becomes infinitely small.  In general, there are three 

types of path planners involving sampling methods. The first type is a multiple-query 

method, evidenced by the Probabilistic Roadmaps, PRM [22], which attempts to map a 

connectivity graph of the entire free space.  This has the advantage of being able to 

handle changing initial and final positions once the maps are created.  The second type is 

the single-query method; Rapidly-exploring Random Trees (RRTs) [23, 24, 25] and 

Expansive-Space Trees (ESTs) [26] fall into this category.  These methods branch out 

from either the initial position or final position, or both, and explore paths until the goal is 

reached, at which time the method ceases.  These methods are generally faster than the 

multiple-query methods but require repeated computation for each new initial or final 

position.  The last type of sampling method is simply a combination of the previous two; 

thereby attempting to harness the advantages of both methods.  An example of this 

technique is the Sample-based Roadmap of Trees (SRT) [27]. 

Though the methods described above are significantly different, each of them 

contains four key actions including: node generation, node connection determination, 

inter-node path planning, and post path processing.  The term ‘node’ is used throughout 

technical literature since each configuration of the vehicle is represented by one point in 

configuration space.  Initially only the starting and final configurations, workspace 

obstacles, and vehicle constraints are known.  New nodes generate in a random, quasi-

random, or deterministic manner or they can be biased depending on manipulability, 

obstacles, or other means.  The location and specifics of the node generation depend 

heavily upon the type of sampling method, as described above.  The new configuration is 

typically tested immediately for compatibility with the workspace constraints and invalid 

nodes are removed.  Multiple-query methods desire to search the entire free space so new 

nodes are often drawn uniformly about the configuration space or biased toward areas 

with obstacles.  Single query methods only want to solve the problem of getting from 

point “A” to point “B” so a new node will typically be chosen conditionally with the help 

of a weight or bias and be an extension from old nodes. 
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During the next action, the planner decides to which of the previous nodes the 

newly generated configuration will be connected.  This most often translates to a strategy 

of connection to the “n” closest nodes that are within a set distance.  The distance 

calculation is important for overall algorithm speed and is non-trivial for problems that 

encompass translation and rotation or high degrees of freedom.  After the connection 

nodes are determined, the path planner must attempt to connect the nodes selected.  

Variations of this path planner can account for significant vehicle kinematic and dynamic 

constraints, but fidelity and speed of the path planner must be traded with the number of 

samples needed to accurately realize a feasible solution.  The path planner must also be 

concerned with the viability of the path with respect to the obstacles.  Typically this is 

accomplished via interpolation of the path.  Resolution of this check affects 

computational speed and for that reason some methods, referred to as “lazy” methods, 

ignore this check all together until a complete path – from start to finish – is found.  This 

is assumed to minimize the number of obstacle checks required. 

Once a feasible solution is found that connects the starting and finishing positions, 

post path processing can be accomplished.  Usual processing methods focus on path 

shortness or smoothness.  As with previous actions, the complexity and speed of this 

process must be traded with the strategy of utilizing a denser node base to determine what 

compromise provides the best results.  Once the solution trajectory is generated the 

control problem has been reduced to a problem of trajectory following; in fact this is 

similarly true of all methods mentioned up until this point except for the potential 

functions.  However, applications have endeavored to extend the scope of trajectory 

planning toward control planning or dynamic planning [28].  This is possible with 

sampling methods since the only significant change in implementation is an increase in 

dimension size, easily handled by this method vice the ones mentioned previously.  This 

implementation can simplify the overall control problem – problem of path generation 

and path following – and therefore represents a significant advantage if it can be 

accomplished in a reasonable computational time. 

Sampling methods have been expanded in great depth in literature.  Numerous 

papers focus on their application to problems with complex vehicle and nonholonomic 

constraints [25, 29 ], dynamic environments [29, 30 ], multiple robots [ 31 ], desired 
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optimality [ 32 ], and high dimensionality [17, 28].  However, in general, sampling 

methods do not provide an optimal trajectory across the entire state space or 

configuration space, even with the assistance of post processing [32].  These methods are 

best used to find feasible solutions regardless of system complexity and work space 

constraints.   

The next path planning method that will be discussed is the analytical approach.  

This name is used not because each implementation produces one specific equation that 

governs all motion; even with a relatively simple problem, this task would be intractable.  

Nor does this name imply the solution is found completely by hand.  In general this 

designation refers to the process of analyzing one problem and simplifying it to the point 

were it can handled more easily.  Often these methods require numerical solutions and 

tunable parameters but can provide solutions online with relatively little overhead.  [33, 

34] create feasible trajectories for car kinematics and constraints utilizing piecewise 

continuous polynomials.  [35] also parameterizes the solution but incorporates its use in a 

dynamic environment.  Subsequently that method was tested in simulation on a robot 

with a limited sensor range.  [36] solves the car problem in a time optimal manner and 

[37] applies a similar method to environments with moving obstacles.  Despite the many 

benefits of analytical methods, most carry a stiff penalty of required global information 

and perfect knowledge or environments.  Even without this drawback, these methods are 

ill-advised for larger problems; so their scalability and portable is at best questionable 

and at worst impossible. 

The final path planning method discussed is the optimal control approach.  An 

overview of optimal control techniques is provided in more detail in [7, 38, 39].  In 

general, these methods solve for the control trajectory that answers the planning problem 

while minimizing a cost function and satisfying constraints.  These problems are too 

complex to be solved analytically and therefore are solved numerically.  With a good 

solver, an optimal control problem primarily becomes one of problem formulation.  In the 

past, these methods suffered from the need of a good initial guess, long computational 

times, and poor convergence.  The latter two concerns are addressed by correct problem 

formulation and generally all three have benefited by advancements in computing power 

and algorithms.  Due to the ease in accounting for constraints and the lure of an optimal 
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solution, these methods have long been used in an offline manner to provide control 

trajectories for complex problems such as reentry and spacecraft mission planning [40, 41, 

42].   

Historically, optimal control techniques were employed extensively in path 

planning problems, and the reason for this was related to the aforementioned reasons of 

impracticality and uncertainty.  The computational complexity, convergence issues, and 

burden of an adequate guess made the application of these techniques intractable despite 

the desirability of the solutions.  Further, the model, sensor, and navigation uncertainty 

marginalized the benefits in favor of an architecture less complex.  The work presented 

here does not develop a new control technique; rather, it simply makes use of advances in 

computing and optimal control algorithms that make this application possible.  While this 

work is intended to demonstrate applicability, future work will analyze the complications 

of uncertainty and its effect on optimality. 

Generally, optimal control methods are complete and high problem 

dimensionality creates problems for only specific optimal control techniques.  Grid-based 

search methods contain grids that grow exponentially with the number of degrees of 

freedom; therefore, more successful and generic numerical algorithms discretize the 

problem with respect to time. 

Recent research [43, 44] has demonstrated optimal control’s application to online 

control functions for complex systems including spacecraft attitude control and 

atmospheric reentry of a reusable launch vehicle.  These papers have shown the 

capability to utilize optimal control in a feedback form thereby accounting for 

disturbances in the vehicle’s environment and removing the need for a trajectory tracker 

in the overall control scheme.  The obvious conclusion that can be drawn from these most 

recent studies in the application of optimal control is that the method limitations lie not in 

optimality, scalability, or completeness, rather it lies in computational complexity and 

even this argument is proving to be weak.   

Robotics engineers are notorious for deftly analyzing planning techniques until a 

problem is found that proves a method’s weaknesses or inabilities.  One such problem for 

optimal control might involve an overly complex maze.  In this case it may be advisable 
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to utilize a technique efficient are constructing feasible trajectories such as the sampling 

methods to generate the initial guess for the optimal controller.  The key point here being 

that benefits of an optimal solution dictate a powerful argument for its exploitation in 

every instance. 

Optimal control methods are the focus of this research not only for the advantages 

mentioned above but also the lack of previous exploration in the application of these 

methods to the car problem and unmanned vehicle control in general.  The focus of this 

study is to advance the understanding of the capability of optimal control methods and by 

utilizing a powerful optimization tool, demonstrate the means to employ these methods in 

real systems online. 

D. DIDO 
This investigation into vehicle control was accomplished at the Guidance, 

Navigation, and Control Laboratory at the Naval Postgraduate School where an 

optimization tool, DIDO©, is available for usage with university studies.  The specific 

methods and algorithms incorporated into this tool are not discussed in this paper and are 

not within the scope of this research.  In General, DIDO is a numerical optimization tool 

that incorporates pseudospectral methods with a sequential quadratic programmer, and 

thereby is capable of rapidly generating extremals for properly formulated optimal 

control problems.  Proper formulation implies that the variables are well scaled and 

balanced and that all dynamics and constraints are differentiable.  Information and 

illustrations portraying DIDO’s development, viability, and applicability for solving 

optimal control problems is found in references [45, 46].   

From a user’s standpoint, this tool affords a relatively quick learning process, and 

provides invaluable information beyond the vehicle’s state and control trajectory.  The 

program will relate to the user if the solution is not feasible as it is currently coded, thus 

providing an avenue for completeness.  Also the user receives solution information 

including the value of the Hamiltonian, costates, and covectors.  This allows the user to 

evaluate the solution with respect to the necessary conditions for optimality.   

E. THE OPTIMAL CONTROL PROBLEM 
Integrating the information from the Kinematics and Constraints subsection it is 

possible to formulate the optimal control problem as Equation Set (8). 
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In this format the function ( ) ( )( ),ih x t y t  represents the path constraints and the number 

of path constraints dictates the number of functions in the problem.  The other vital 

concept introduced by this problem is the cost function.  Any number and type of cost 

functions could have been used including: distance, time, and energy for example.  While 

much of the previous research focuses on distance optimal criteria, the reasoning for this 

approach is not evident and is often related to the limitations of the solving technique.  

Time optimal solutions are chosen partially to display the capability of this method, but 

they are also selected to set a new, more realistic standard for optimality.  However, it 

should be kept in mind that the specific cost function used is insignificant with this 

approach, as any can be incorporated. 

Two concepts must be explored in more detail before this optimal control problem 

can be solved.  The first is the path constraints, and the second is the scaling and 

balancing. 

1. Path Constraints 
One advantage of optimal control methods is the ease of representing constraints.  

In general a constraint can be a function of the states, controls, or time so long as it can 

be written algebraically.  For the car problem, there exist vehicle constraints – holonomic 
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kinematics and control constraints – and path constraints.  The path constraints are the 

obstacles around which the car must maneuver.  For simplicity and computational 

efficiency it was desirable to represent the path constraints as continuous algebraic 

functions.  With this framework in mind, the p-norm was used to create most generic 

shapes including: diamonds, circles and ellipses, and squares and rectangles.  Figure 4 

demonstrates how the p-norm can be manipulated to create these obstacle shapes; the 

ellipse and rectangle are simply extensions of the circle and square respectively where the 

distance along the x and y axes are dissimilar.  Equation (9) presents the generic equation 

used to build these shapes.  Specifically the square and rectangle are created by an 

infinity norm, which is the equivalent to selecting the maximum magnitude.  

Approximation of this function can be accomplished using Equation (9) and a large value 

for the exponent.  Higher values for the exponent yielded sharper corners, but they often 

created numerical concerns.  The square in Figure 4 was created by setting the exponent 

to 100. 

 
Figure 4 Unit P-Norms for P = 1, 2, and Infinity Respectively. 
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Modeling shapes outside of the generic geometries presented above would be a 

powerful option and, in most cases, more realistic of the random nature of the world.  

However, even simple polygonal shapes are non-trivial since they can not be wholly 

described by one algebraic equation.  Figure 5 is a straightforward example of a simple 

shape, described by the confluence of three lines, which can not be characterized by the 

p-norm. 
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Figure 5 Simple Geometric Shape Constructed by Three Lines. 

Using the equation for each line it is possible to create a series of inequality 

constraints that defines each point within the obstacle.  This concept is evidenced by 

Equation Set (10). 
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 (10) 

While every point within the obstacle satisfies every one of the three constraints, every 

point outside the obstacle must not satisfy at least one.  Essentially this is an ‘or’ 

statement.  Given that continuous and smooth functions are desirable for DIDO 

implementation, a simple logical operation could not be implemented.  Instead the 

resulting g  vector is searched for the minimum entry, and if this entry is less than zero it 

can be stated that the point is outside the obstacle.  Mathematically every feasible point 

on the map satisfies Equation (11). 

 ( ) ( )( ) ( ) ( ) ( ){ }1 2 3, min , , 0ih x t y t g x g x g x= <  (11) 

Figure 6 clarifies this concept.  The left panel shows the mathematical constraints of the 

triangular obstacle and right panel shows the resulting values of the new path constraint 

function over the positional domain.   
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Figure 6 Constraint Representation of a Simple Polygonal Shape. 

 

The sharp corners are captured exactly by this method.  The result is continuous and 

grows linearly with distance from the obstacle; however, the result is not smooth, i.e. 

non-differentiable. The non-smoothness arrives from the fact that the path constraint is 

essentially the union of three planes.   

It is possible to correct the non-smoothness problem, but this comes at a loss of 

accuracy in rendering the sharp corners.  Equation (12) displays the mathematical 

expression for this approach, and it occurs in three distinct steps. 

 ( ) ( )( ) ( ) ( ) ( )( )1 2 3
1/

, , ln 0
pg x p g x p g x p

P ih x t y t e e e− ⋅ − ⋅ − ⋅⎡ ⎤= + + >⎢ ⎥⎣ ⎦
 (12) 

In the first step the elements of g  are multiplied by negative one and made into an 

exponent.  This maps all previously positive values of g  to numbers between zero and 

one and all previously negative values to numbers greater than one.  The next step is to 

take a p-norm; this step extracts the largest, single value of g .  The last step uses the 

natural logarithm to scale the values back to the original range.  In this case a positive 

value for the path constraint indicates a position outside the obstacle.  Both the power of 

the p-norm and the base of the exponent/logarithm can be altered to provide better 

smoothness.  Figure 7 provides a picture of a result; the loss of sharpness around the 

corners is visible.  This provides a good example of where non-smooth optimization  

 

h1(x)>0 

h1(x)<0 
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would be a valuable tool.  Without a precise representation of the corner of an obstacle it 

is necessary during implementation to add a small buffer around obstacles to ensure that 

the path produced is actually obstruction-free.   

 
Figure 7 Smoothed Polygonal Constraint. 

 
2. Scaling and Balancing 
The quality of numerical solutions to optimal control problems relates directly to 

the quality of the problem formulation.  This fact is true not only in terms of the accuracy 

of the answer, but also with respect to the computational time.  One key issue involved 

with problem formation is scaling and balancing.  Addressing this issue requires that the 

problem be reformulated such that the optimization algorithm only sees a problem that is 

scaled and balanced appropriately.  To this end a scaling by variable approach was taken 

and is evidenced in Equation Set (13).  The value of the scaling time unit is not 

specifically provided because in typical application it varied with respect to the overall 

traveling distance and the maximum speed of the vehicle. 
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 (13) 

Utilizing the new scaled variables the problem statement can be rewritten as is 

presented in Equation Set (14).  While this process seems trivial, it is crucial in regards to 

the derivation of the necessary conditions for optimality as is witnessed in the next 

subsection. 
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3. Verification and Validation 
The dynamic optimization problem stated above has the goal of finding a function, 

i.e. the entire control history, and is therefore infinite dimensional.  The Minimum 

Principle converts the infinite dimensional problem to an instantaneous finite dimensional 
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mathematical programming problem that can be solved numerically by DIDO to find an 

extremal.  Proving the global optimality of a solution is intractable, but it is always 

sensible to verify the necessary conditions, Bellman’s principle, and path feasibility for 

each solution obtained.  The latter is checked by propagating the initial conditions and 

system dynamics with the available control trajectory using MATLAB’s Runge-Kutta 

algorithm.  Bellman’s Principle can be verified by extracting points from along the 

optimal solution.  Finally, the necessary conditions are verified algebraically and visually 

using the derivation that follows. 

For the scaled and balanced problem provided in the previous subsection, the 

control Hamiltonian can be written as the following: 
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 (15) 

Now the optimal control problem can be reformulated and presented as Equation (16).   
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 (16) 

In Equation (17) the Lagrangian of the Hamiltonian is found so that the control and path 

constraints are included. 
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After presenting these equations it is possible to formulate the necessary conditions for 

optimality. 
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The first provision is the Hamiltonian Minimization Condition (HMC) and it 

requires that the partial derivative of the Lagrangian of the Hamiltonian with respect to 

the control variables be equal to zero, Equation (18). 
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 (18) 

Complementing this is the Karush-Kuhn-Tucker (KKT) conditions for the covectors. 

 

( )
( )

( )
( )

( )
( )
( ) ( )( )
( ) ( )( )

0 1
0 1 1
0 1

0 1
0 1 1
0 1

, 00
0 , 0

v

i
h

i

v t
for v t

v t

t
for t

t

h x t y t
for

h x t y t

φ

μ

φ
μ φ

φ

μ

−

−

−

−

≤ =⎧
⎪= < <⎨
⎪≥ =⎩
≤ =⎧
⎪= < <⎨
⎪≥ =⎩

>=⎧
⎨≤ =⎩

 (19) 

For a time optimal problem, it can be expected that the vehicle velocity will be at the 

maximum value and in most cases the vehicle steering angle will be somewhere between 

the minimum and maximum.  The first expectation translates to 0vμ ≥ , but in general 

this tells little about the other terms in the first equation of the HMC.  The second 

expectation leads to the conclusion that typically 0φμ =  and the first term in the second 

equation of the HMC will also need to be zero to satisfy optimality conditions.  This can 

only be true if 0θλ =  when the car is in motion.   

The next necessary condition is the Adjoint Equation and it describes the change 

of the costates over time.  Equation (20) provides the derivation of this equation. 
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Several important concepts can be extracted from this information.  First, xλ  and yλ  

remain constant whenever the vehicle is not touching an obstacle; this is derived with the 

assistance of the KKT conditions which show that 0hμ =  when ( ) ( )( ), 0ih x t y t > .  

The second key concept is more involved.  As discussed previously, θλ  is expected to be 

zero when the car is in motion; however, the equation for θλ  shows that θλ  must also be 

constant when the vehicle is not in motion.  Therefore, Equation (21) must be true at all 

times that the maximum steering angle is not being used, and this, in turn, forces xλ  and 

yλ , by virtue of the equation for θλ , to compensate for changes in θ , the car’s 

orientation angle, that would otherwise cause Equation (21) not to be true.   

 0θλ =  (21) 

This fact may initially appear trivial, but since θ  can also be thought of as the direction 

of instantaneous motion for the car, it can lead to a second deduction.  It can be deduced 

that since xλ  and yλ  only change when touching an obstacle, θ  can only change when 

the car is touching an obstacle, and when the car is not touching an obstacle it must be 

traveling along a straight path.  This proves mathematically a seemingly logical 

conclusion and the basis of the research presented in [36].  As a reminder though, this 

analysis is not valid when the maximum steering angle is being used; at that time φμ  

would have a value other than zero although it is not expected to occur often. 

The next stipulation is the Terminal Transversality Condition (TTC), which helps 

to provide boundary conditions for the costates.  The TTC can be stated as Equation (22). 

 
( ) ( ) ( ) ( ), , , ,T

f f f f f f f
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and θ
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ν ν ν ν

∂
= = +
∂

⎡ ⎤= ⎣ ⎦

 (22) 

In this equation ( ), ,f fE x tν  is the Endpoint Lagrangian and ( ),f fE x t  is the Endpoint 

Cost.  Applying this condition to the car problem yields Equation (23). 
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 (23) 

Unfortunately, this necessary condition only specifies that the final value of θλ  be equal 

to zero; a fact that was deduced previously. 

 The final two necessary conditions are considered simultaneously since the both 

pertain to the value of the Hamiltonian.  The first is the Hamiltonian Value Condition 

(HVC), Equation (24), which is applied in situations such as this where the final time is 

not fixed. 

 ( ) ( )0 1f f
f

EH t H t
t

−∂
+ = ⇒ =
∂

 (24) 

This result is complemented by the Hamiltonian Evolution Equation (HEE), Equation 

(25), which describes the evolution of the Hamiltonian. 

 0HH H
t

∂
= ⇒ =

∂
 (25) 

Together these two outcomes show that the value of the Hamiltonian must be a constant 

negative one throughout the trajectory. 

In summary, these aforementioned conditions, along side the feasibility 

verification, cannot prove global optimality, but in the very least it can demonstrate that 

the solution obtained through DIDO is viable and locally optimal.  Therefore, even in the 

worst case, this method provides more capability to the user than the approaches used 

previously. 
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III. TRICYCLE PROBLEM 

A. MOTIVATION 
In the process of validating results for the four-wheeled car problem, it was first 

desirable to ensure that the solution technique could be validated on a less complex 

problem.  The tricycle problem was a perfect candidate to satisfy this request, and given 

its extensive use by previous path planning techniques, it provides a good foundation for 

introducing the capability of optimal control methods.  The dynamics of the tricycle are 

similar but less complex than the four-wheeled car, thereby allowing the tricycle to rotate 

in place.  Other than this nuance, the problem definitions contain many parallels, making 

the tricycle problem an ideal step in an iterative process of proving the capability of a 

new control technique. 

 

B. PROBLEM DEFINITION 
Similar to the four-wheeled car, the tricycle has two rear wheels, however, this is 

where the similarities end.  There is only one forward steering wheel and it typically 

provides the driving power.  The kinematics of a tricycle system can be represented as 

Equation (26). 

 
( )
( )

cos
sin

x v
x y v

θ
θ

θ ω

⋅⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⋅⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (26) 

In this representation the positional coordinates reflect the position of the forward wheel 

where it touches the ground, but the equation for θ  is simplified.  The scaled optimal 

control problem can be devised as Equation (27).  The parallels between this problem 

formulation and the original drive the Adjoint Equation, TTC, HEE, and HVC to be 

unchanged from the previous derivation.  The HMC and KKT Conditions do change and 

this variation is evidenced in Equations (28) and (29).  The conclusions drawn from the 

car problem necessary conditions are reflected here.  When the tricycle is not changing its  
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heading, θλ  must be zero, and xλ  and yλ  must be constant when the tricycle is not 

touching an obstacle.  Also the Hamiltonian must be a constant value of negative one 

throughout the trajectory, this consistent with all minimal time problems. 
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C. SOLUTION VALIDATION 
Validation of optimal solutions occurs in three steps including: necessary 

conditions, feasibility, and Bellman’s Principle.  Throughout this paper the 
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aforementioned verification techniques will be applied and displayed for one instance of 

a particular problem formulation.  Validation will not be repeated for each application of 

a problem formulation so long as the structure remains unaltered and the repeated display 

offers no further information. 

The problem selected for method validation involves three circular shapes; the 

optimal trajectory and obstacles are presented in Figure 8. 

 

 
Figure 8 Optimal Tricycle Kinematic Positional Trajectory (left) and Angular 

Trajectory (right). 
 

From the trajectories presented here, it is apparent that the vehicle is traveling in a 

straight line when it is not touching an obstacle.  The positional and angular trajectories 

are presented in an unscaled form; the remaining figures give information in scaled form 

since it is more important to see the scale of the variables inside DIDO.  Figure 9 gives 

the scaled control trajectory.  The maximum velocity is used at all times.  The maximum 

steering angle is applied only at the beginning of the trajectory, and this means that, 

according to the KKT conditions and HMC, ωμ  and θλ  should be zero at all times except 

during the beginning.  Figure 10 and Figure 11 display the costates and covectors, which 

instantiate this situation.  Further, Figure 10 and Figure 11 can be studied to reveal that 

xλ  and yλ  only change in value when the tricycle touches an obstacle, i.e. when the path 

constraint covectors become active. 
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Figure 9 Scaled Control Trajectories for Validation Problem. 
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Figure 10 Costate Trajectories for Validation Problem. 
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Figure 11 Covectors for Control (left) and Path (right) for Validation Problem. 

 

The HMC equations, from Equation (28), are plotted in Figure 12 showing that 

this condition is confirmed within numerical precision.   
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Figure 12 Plot of the Hamiltonian Minimization Condition Equations for the Validation 

Problem. 
 

The value of the Hamiltonian is plotted Figure 13; this figure validates the HEE 

and HVC. 

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

Scaled Time

 
μv μ

ω

0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

Scaled Time

 
μh1 μh2 μh3



34

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

Time (sec)

H
am

ilt
on

ia
n 

Va
lu

e

 
Figure 13 Plot of the Value of the Hamiltonian for the Validation Problem. 

 

The next step of validation involves state propagation of the tricycle model using 

the DIDO generated control trajectory.  This step employs MATLAB’s ‘ode45’ 

command which is based on an explicit Runge-Kutta formula.  Figure 14 gives the 

propagated positional and angular trajectories side-by-side with the DIDO generated 

trajectories for comparison.  Due to the similarity between the two trajectories, they are 

nearly plotted in the same graph 
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Figure 14 Propagated versus DIDO Generated Positional (left) and Angular (right) 

Trajectories. 
 

The last step in validation is verification of Bellman’s Principle.  This rule can 

best be explained by a thought experiment.  Imagine that A and B are two points that 
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have been connected by an optimal path, and point C lies along this optimal path.  If the 

previous statements are true, then the optimal path that connects point A to point C and 

likewise connects point B to point C must coincide with the original path between A and 

B.  This principle is straightforward, but it provides a benchmark to which all 

optimization techniques can be tested.  For the tricycle problem, two intermediate points 

along the generated optimal solution were selected for testing of Bellman’s Principle.  

With the two endpoints and two intermediate positions, three optimal sub-trajectories 

were calculated and compared to the original shown above.  Figure 15 displays the results 

of this comparison.  The original trajectory is shown in black and the sub-trajectories are 

presented in each a different color.  The paths are identical. 

 
Figure 15 Bellman’s Principle Test for Validation Problem. 

 

A similar point can be made by Figure 16 which shows that the total cost of the original 

trajectory is equivalent to the sum of the sub-trajectory costs. 
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Figure 16 Trajectory Cost for Continuous and Segmented Paths. 

 
D. RESULTS 

Other aspects of the simulation technique could be tested with the tricycle model.  

The validation problem from the previous section used three circular obstacles.  Other 

flat-edged p-norm shapes and the polygonal shapes needed to be evaluated.   

Figure 17 shows the DIDO generated optimal path for a problem similar to the 

validation problem with the exception of using squares generated by the p-norm – with an 

exponent value of 100.  In addition to the path, the trajectory points created by DIDO are 

also displayed – each point appears as an ‘x.’  DIDO turns the optimal control problem 

into a finite-dimensional parameter optimization problem, and in doing such, it 

discretizes the trajectory with respect to time.  The degree of discretization used by DIDO 

is a user-defined quantity, specified by the number of nodes.  At each node, optimality 

and satisfaction of the constraints are ensured.  In other words, the discretized solution is 

feasible but the continuous solution is not.  From Figure 17 the limitations of DIDO 

generated optimal solutions are apparent.  The nodes of the optimal solution satisfy the 

constraints but the path that is propagated in between the nodes does not.  This condition 

is caused by the discretization of the optimal control problem and by the inaccurate 

representation of the square shape by the 100-norm – vice the infinity norm.   
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Figure 17 Tricycle Optimal Path in Square Obstacle Environment. 

 

Two solutions to this problem can be implemented.  The first is to use a greater 

degree of discretization.  By using more nodes, the optimal path will be less likely to cut-

the-corner, but the drawback of this approach is increased computational complexity.  

The second approach is to fictitiously extend the size of the obstacle when describing the 

path constraint.  This can ensure that the path lies outside the actual obstacle, and is 

necessary regardless to ensure that a vehicle with size beyond a single point can traverse 

the path.  Figure 18 shows a new optimal path generated by increasing the number of 

nodes and extending the obstacle size by 0.1m.  The result is satisfactory as the path now 

lies outside the obstacle.  Prudent judgment must be exercised when implementing either 

of these corrections.  Increasing the number of nodes can significantly add to calculation 

time, Table 1, with minor improvement in solution accuracy.  In general, increasing the 

number of nodes alone will not remove the problem of driving through a sharp corner, 

and it has a limiting effect on closed-loop problems.  For this reason, it is not the 

preferred method of rectifying the problem.   
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Figure 18 Adjusted Tricycle Optimal Path in Square Obstacle Environment  

(0.1m Obstacle Extension). 

 

 
Figure 19 Further Adjusted Tricycle Optimal Path in Square Obstacle Environment 

(0.25m Obstacle Extension) 
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Table 1 Effect of Problem Formulation on Computation Time 

 No Extension 0.1m Extension 0.20m Extension 

20 Node Pre-Computation 24 seconds 16 seconds 18 seconds 

60 Node Solution 36 seconds 40 seconds 44 seconds 

80 Node Solution 51 seconds 61 seconds 101 seconds 

 

Correcting the corner problem by extending the obstacle can also have a negative 

effect on the result.  As can be seen in Figure 18 and Figure 19, increasing the extension 

length forces the resultant path to be less optimal with respect to the actual obstacle size.  

Logic dictates that the obstacles can be extended to a point where the optimal path travels 

outside the obstacle formation.  The big picture perspective however, is that in robotics, 

optimality is not the only criteria for judging the value of a path.  Due to sensor error, 

model error, and other uncertainties, an optimal path that exactly touches an obstacle 

would likely result in failure.  In other words, an optimal solution is worthless if it results 

in real-world failure.  The solution that will be addressed in paper is to balance the 

desirability of optimal solutions with the necessity of obstacle avoidance. 

Given that the polygonal shapes also have sharp corners, it is no surprise that 

optimal paths experience the same problems around these shapes.  This problem can be 

resolved in the manner discussed previously.  Figure 20 shows an optimal trajectory 

around a five-sided polygonal shape; the constraint shape was extended to permit proper 

path planning. 
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Figure 20 Optimal Tricycle Trajectory around Polygonal Shape. 

 

Some problems, such as the maze problem shown in Figure 21and Figure 22 

create a more substantial challenge for DIDO.  Until this point all results have been 

generated by a low-node pre-computation step followed by a more accurate, high-node 

solution.  This method, referred to as bootstrapping, not only improves accuracy but also 

aids computation time since the pre-computation step provides a good guess for the final 

solution.  The initial guess given in the pre-computation step provides only the initial and 

final locations, i.e. no guess.   

The maze problem has narrow, long obstacles which are not captured well by the 

low-node pre-computation trajectory, Figure 21; therefore, a poor guess is given to the 

high-node solution step.  This issue creates an intractable problem for DIDO, i.e. the 

high-node DIDO solution creates infeasibilities, but this is a problem caused by global 

information and a bad low-node guess.  Upon receiving the infeasibilities the DIDO 

program recommends that the user implement a different guess.  In general, the 

complexity of the path constraints creates a similar result regardless of the number of 

nodes utilized when the initial guess is a “no guess.” 
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Figure 21 Low-node Pre-computational Step for Maze Problem.  

 

The solution in Figure 22 is generated by providing DIDO with a simple four-

point initial guess, two of which are the initial and final positions.  This illustrates 

DIDO’s strengths and weaknesses.  Generally DIDO can be used with poor or minimal 

guess information; however, complex path constraints can create problems if a bad guess 

is supplied.  Human intervention can remain null even in complex problems so long as a 

technique is implemented to provide DIDO with a tangible guess.  This can be 

accomplished with one of the sampling methods mentioned earlier.  Later versions of 

DIDO will address this concern internally and remove the necessary human intervention. 
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Figure 22 Optimal Tricycle Trajectory through a Maze Problem. 
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IV. FOUR-WHEELED CAR 

A. OPEN LOOP 
The previous section validated the open loop optimal control techniques with the 

simplified tricycle dynamics, and this section applies the same concepts to the four-

wheeled car problem.  The lessons learned with regard to path constraint representation 

directly transfer from the tricycle problem to the car problem since they relate only to 

workspace constraints, not to vehicle characteristics. 

1. Validation 
The first objective was validation of the car problem results, thereby permitting 

greater exploration of applications.  The validation problem used for the car, shown in 

Figure 23, consists of several obstacle shapes including squares, circles, ellipses, 

rectangles, and diamonds.  As was explained in the previous section, the obstacle size 

was fictitiously enlarged during constraint representation to allocate adequate clearance 

for the vehicle and permit the car to successfully maneuver sharp corners. 

 
Figure 23 Car Optimal Control Validation Problem. 
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The initial and final conditions for this problem are described by Equation (30). 

 ( ) ( ) ( ) ( )0 0 , 10 10 04
T Ti

f f fx t x e x t x t y tπ⎡ ⎤ ⎡ ⎤= = = − − =⎣ ⎦⎣ ⎦  (30) 

Figure 23 provides the optimal positional trajectory.  The car encounters only 

three obstacles along its path, and no path constraint violations occur during the trajectory.  

Figure 24 displays the angular trajectory of the solution; the results are presented in 

degrees to ease visualization.  Despite the noise in the solution, the car travels in a 

straight line when it is not contacting an obstacle. 
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Figure 24 Angular Trajectory for Car Validation Problem. 

 

The control trajectory is presented in Figure 25, and once again, the angle is given 

in degrees for the purposes of visualization.  As expected, the velocity is at its maximum 

value throughout the maneuver and the steering angle value is primarily between its 

extremes of ±35°.  The first situation causes the velocity covector to be active throughout 

the maneuver and the latter has the opposite effect on the steering angle covector. 
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Figure 25 Control Trajectory for the Car Validation Problem. 

 

Figure 26 through Figure 30 display the necessary condition graphs for the car 

maneuvering optimization problem including, in the order of presentation: the control 

Hamiltonian value, the Hamiltonian Minimization Condition (HMC) verification, 

costates, path covectors, and control covectors.  Numerical error is visible in the figures 

of the Hamiltonian and HMC verification; however, the value Control Hamiltonian is 

averaged to negative one over the length of the maneuver – condition ensured by DIDO.  

As was predicted by the necessary conditions, xλ  and yλ  remain constant unless the path 

constraint covectors become active, when the vehicle is near an obstacle.  In addition, θλ  

remains a constant zero throughout the trajectory. 
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Figure 26 Control Hamiltonian Value for the Car Validation Problem.  

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Normalized Time

H
am

ilt
on

ia
n 

V
al

ue

 

 

∂H/∂v ∂H/∂φ

 
Figure 27 Hamiltonian Minimization Condition Verification for the Car Validation 

Problem. 

 



47

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

Normalized Time

 

 

λx λy λ
θ

 
Figure 28 Costate Values for the Car Validation Problem. 

 
Figure 29 Path Constraint Covectors for the Car Validation Problem. 
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Figure 30 Control Covectors for the Car Validation Problem. 

 

Figure 31 and Figure 32 display the state variables, propagated with a Runge-

Kutta, algorithm, and compare them to the DIDO generated state variables.  In each case, 

the propagated states are identical to the DIDO generated states within interpolation 

error; therefore, the kinematic trajectories generated by DIDO are deemed feasible.   

Lastly, Bellman’s principle was validated, accomplished by generating three sub-

trajectories that initiate at points along the original optimal path and terminate at the 

endpoint manifold.  For the sake of simplicity, the starting points for the sub-trajectories 

were chosen to be approximately the one-third, one-half, and two-thirds distance 

locations along the original path.  Figure 33 shows that the original optimal kinematic 

trajectory and the subsequent optimal sub-trajectories all lay along the same path.  Figure 

34 further evidences the fact that each trajectory lies along the same path; in each case, 

the final cost was identical. 
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Figure 31 DIDO Generated and Propagated Positional Trajectories. 
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Figure 32 DIDO Generated and Propagated Angular Trajectories. 
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Figure 33 Verification of Bellman’s Principle with Three Optimal Sub-trajectories. 
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Figure 34 Verification of Bellman’s Principle by Cost Comparison. 
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2. Results 

Having proven the validity of the DIDO created optimal solutions, this subsection 

exploits the portability and capability of this method while solving the car problem under 

various, complex scenarios. 

a. Obstacle Rich Environments 
Obstacle rich environment problems only occur under the condition of 

global information.  By having instantaneous knowledge of the entire workspace, the 

location of every obstacle is known prior to any exploration, and while this is thought to 

be an easier problem then that typically faced in robotics, it can create computational 

challenges for the planning algorithms.  Many specific algorithms were created for the 

sole purpose of helping to maneuver through particular workspace obstacle 

configurations including cluttered obstacles, tight openings, spiral mazes, and potential 

field traps.  In general, DIDO can handle these problems without the need of a guess, and 

DIDO solutions provide the benefit of kinematic satisfaction and optimality. 

Figure 35 gives a time-optimal trajectory through 32 circular obstacles. 

 
Figure 35 Time-Optimal Trajectory through 32 Obstacle Field. 
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Figure 36 includes a trajectory through a complex ellipse environment. 

 
Figure 36 Optimal Trajectory through Complex Ellipse Environment. 

 

In each of these cases, the first computation was a low-node solution, which was later 

used as a guess to a high-node solution.  The initial guess given to the low-node solution 

involved only the initial and final positions.   

b. Parallel Parking 

Parallel parking creates an interesting challenge because the car will be 

maneuvering in a small space to position and orient itself correctly.  The planning 

algorithm must be aware of the entire volume of the car to plan accordingly.  In previous 

problems, the car has driven forward causing the front and rear axles to traverse nearly 

the same trajectory on the ground.  For this reason, the x-y state representation of the 

mid-point of the rear axle and the fictitious expansion of the obstacles was sufficient to 

ensure that no collisions occurred.  For the parallel parking problem, this was no longer 

sufficient, and one simple solution was the addition of a second point on the car from 

which to derive path constraints – the mid-point of the front axle.  This approach did not 
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affect the system dynamics or boundary conditions, but it doubled the number of path 

constraints.  Calculation of the mid-point of the front axle could be handled simply with 

the rear axle position, the length between the axles, and the orientation of the car. 

Figure 37 shows picture frames from the traditional parallel parking 

problem where the car backs down upon the parking location.   

  

 
Figure 37 Time-Optimal Parallel Parking Maneuver; Location is Behind the Car. 

 

Figure 38 pictures the same scenario; however, the illustration is now two-dimensional.  

From this illustration, it is apparent that the final vehicle position is not centered between 

the two obstacles; the reason for this is the fact that the state variables provide the 

position of the center-point of the rear axle. 

The maneuver requires only two changes in steering wheel direction.  The 

wheels are first oriented to drive the back of the car into the space, and then the steering 

angle is reversed to get the front wheels into the space.  This maneuver requires no 

reorientation since it takes advantage of the fact that the steering wheels are in the front 

of the car.  Also the vehicle does not proceed to the space by moving parallel to the 

obstacles, which is common in normal driving; however, people  
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Figure 38 Two-Dimensional View of Backward Parallel Parking Maneuver. 

 

Figure 39 and Figure 40 shows the time-optimal parallel parking 

maneuver when the problem is initiated from below an open parking spot.  Typical real-

world driver actions include pulling in front of the space so that the problem is presented 

as it was previously.  This simulation shows that the redefinition of the problem is not 

necessary and reduces time optimality; however, the trajectory is more complex.  As seen 

below, the parallel parking maneuver could not be accomplished without reorientation of 

the car to attain the proper lateral position within the parking space, i.e. four steering 

directions were utilized.  Most drivers prefer to park with as little complexity as possible; 

therefore, it is not surprising that the majority of them approach the problem in the first 

manner.  In robotics, it is not necessary to be concerned with trajectory complexity or 

standard problem representation; rather, path optimality should be the goal.  This problem 

evidences a situation where non-conventional problem representation can actually 

simplify solution attainment by not requiring an algorithm to position the correctly to 

back down upon the parking spot. 
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Figure 39 Time-Optimal Parallel Parking Maneuver; Location is in Front of the Car. 

 

 
Figure 40 Two-Dimensional View of Forward Parallel Parking Maneuver. 
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c. Moving Obstacles 

Dynamic environments create further challenges for several planning 

techniques.  Little effort is required to adapt the previously static obstacles to moving 

obstacles.  The only required change is the alteration of the path constraint function to a 

function dependent upon position as well as time, ( ), ,h x y t .  Mathematically the 

greatest effect of this change is the explicit time dependence of the Lagrangian of the 

Hamiltonian; however, so long as the path constraint covectors are not active, the 

Langrangian of the Hamiltonian will still produce a constant value in accordance with the 

necessary conditions. 

Figure 41 and Figure 42 show two different views of the same problem.  

The problem involves two circular obstacles that are moving in opposite directions – up 

and down in the field of view – at two different speeds, evidenced by the velocity vectors 

shown.  Figure 41 shows the trajectory with multiple picture frames. 

 
Figure 41 Time-Optimal Trajectory with Moving Obstacles. 
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Figure 42 shows the same trajectory, but it does so from the perspective of 

a camera and strobe light.  This view allows the observer to better visualize the trajectory 

taken by the car as it attempts to avoid the moving obstacles.  

This scenario evidences the fact that optimal control solutions are ideal to 

solving problems with dynamic environments; the problem statement changes little with 

the addition of moving obstacles.  During the real-world implementation of this technique 

with moving obstacles, the challenge primarily shifts to sensor identification and tracking 

of obstacles so that adequate information can be passed to the path planner. 

 

 
Figure 42 Time-Optimal Trajectory with Moving Obstacles, Strobe Picture. 

 

d. Moving Target 
A similar experiment was conducted using a dynamic endpoint manifold.  

For this problem, the obstacles remained stationary but the final position was moving.  

This condition also requires minimal alteration within the optimal control problem 

framework for resolution.  In the case of the time optimal problem, the Endpoint 

Lagrangian adds a new term explicit with the final time – problems that do not optimize 
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final time would not previously have any terms.  This addition does not change the fact 

that the Lagrangian of the Hamiltonian should be constant, but it does mean that it will 

have a different final value, from the Hamiltonian Value Condition.   

Figure 43 and Figure 44 display the results in a manner similar to the 

dynamic obstacle problem figures.  While this problem solution satisfies the necessary 

conditions for being an extremal solution, Figure 44 presents visual evidence that 

portends a solution that would be globally optimal.  Interestingly, the extremal trajectory 

travels between the two obstacles to reach the final position; intuition would lead the 

observer to believe that the globally optimal solution would travel below both obstacles 

and reach the final position in a more expeditious manner.  To explain why this occurred, 

it is necessary to understand that the initial guess given to DIDO involved only two 

points.  The first point is the starting position and the final point was where the endpoint 

manifold would be at a time long after calculated maneuver time. 

 
Figure 43 Time-Optimal Trajectory for Moving Target. 
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Figure 44 Time-Optimal Trajectory for Moving Target, Strobe Picture. 

 

To evaluate how the guess affects the optimal solution, the problem was 

run again with a different initial guess.  Figure 45 and Figure 46 show the optimal 

trajectory when the initial guess uses a different second point.  For this simulation, the 

second point of the initial guess was the position of the endpoint manifold at the point in 

time of the previous maneuver’s completion.  The result is more intuitive and less costly 

maneuver than the previous solution, and the trajectory satisfies the necessary conditions 

for being an extremal path.  The difference in trajectory cost between the first and second 

solutions was approximately 12%; therefore, the second path was also far more 

numerically optimal.   

This example evidences two important facts concerning optimal control 

methods.  First, the solutions are not necessarily globally optimal; even verification of the 

necessary conditions ensures only that the path is extremal.  Second, the initial guess 

plays a significant role in the result achieved.  Overall, the most important aspect of 

applying optimal control methods to robotics problems is the generation of a feasible 

solution; in the very least, the resulting trajectories are extremal and feasible.  All other 

path planning methods create only feasible trajectories; therefore the results shown here 

provide an improvement to the other techniques. 
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Figure 45 Second, Time-Optimal Trajectory with Moving Target. 

 

 
Figure 46 Second, Time-Optimal Trajectory with Moving Target, Strobe Picture. 
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e. Actuator Failures 

Optimal control methods offer advantages for dynamic environments but 

they also prove useful when actuator failures limit the control capability.  If ever the 

steering wheel gets stuck or the car can only move backwards, a new optimal trajectory 

can be calculated that takes this problem into account.  This ability enables greater 

autonomy by allowing vehicles to continue activity despite a failure. 

Figure 47 pictures an optimal trajectory when the car can only turn left, i.e. 

the steering angle is limited between two positive values.  Two types of motion occur 

during this maneuver.  The first type involves the car driving forward and using the 

minimum steering angle, producing the maximum turning radius.  The second type of 

motion occurs at the end of each forward segment.  At that time, the car stops its forward 

motion and then backs up as it is using a maximum steering angle.  This motion allows 

the car to reorient in the minimum amount of distance, the minimum turning radius.  

Therefore, the optimal trajectory is composed of forward motion maximal turning radii 

and backward motion minimal turning radii. 

 

 
Figure 47 Optimal Trajectory during Control Failure, Must Turn Left. 
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B. CLOSED LOOP 

1. Motivation 

The previous section demonstrated the capability of optimal control methods in 

developing open-loop solutions that are both feasible and optimal.  Application of these 

methods directly to a car robot would require one of two modifications to synthesize the 

control signals.  Vehicular control signals could be generated either by the use of a 

trajectory following subsystem to track the trajectory created by DIDO or directly from 

the output of DIDO by changing the problem definition to include the control signals as 

the controls.  While both of these methods have merits, they also have experience 

limitations in regard to real-world implementation.  These methods do not operate 

effectively if only local information is available, if the vehicle model is not accurate, if 

sensor data is not perfect, or if external, unforeseen forces act on the vehicle.  Each of 

these is an example of uncertainty and the only means of managing uncertainty is 

feedback. 

The focus of the following research is to provide precursory analysis of optimal 

control application to robotics platforms, and the eventual goal is the successful 

integration of these techniques into real-world platforms to prove their significance.  The 

only means by which this can be accomplished is through closed-loop application of 

optimal control methods, and that problem is the focus of the remainder of this section. 

2. Problems with Closing the Loop 
Closed-loop implementation of optimal control methods is similar in many 

aspects to testing Bellman’s principle; in fact, if there was no uncertainty, then closed-

loop optimal control would only prove Bellman’s principle.  With the existence of real-

world uncertainty, the vehicle does not exactly follow the predicted path; therefore, 

additional optimal solutions do not necessarily parallel the previous.   

The first requirement needed to conduct simulations is a means by which to 

model problem uncertainty.  Numerical errors partially mimic the uncertainty seen in real 

life.  By interpolating the control solutions generated by DIDO and propagating the 

results with a Runge-Kutta algorithm, the vehicle’s future position can be predicted at 

any time, but this will never agree precisely with the DIDO position.  The difference 

between the DIDO generated optimal solution and the propagated result was chosen to 
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represent problem uncertainty.  The interpolation technique, i.e. cubic, spline, etc., is a 

critical decision in the modeling process and it can significantly alter the result.  While it 

is typically desirable to employ the technique that most closely captures the control 

trajectory, occasionally it was useful to use a different method to analyze the ability of 

the controller to overcome considerable uncertainty.  Generally, numerical error is not 

likely equivalent to model, sensor, and navigation error; therefore, the assumption made 

here to simulate all uncertainty as numerical error will require more future analysis. 

Incorporating problem uncertainty leads to a significant dilemma in utilizing 

optimal control methods for closed-loop control.  In general, optimal solutions touch path 

constraints or obstacles since optimal solutions necessitate extremes.  This solution, 

however, is no longer desirable when problem uncertainty is considered.  During 

simulation, uncertainty can cause the vehicle to move into a path constraint that it was 

previously touching; this forces an infeasible problem since the vehicle’s position is not 

in a valid location.  The real-world equivalent of this concern is that the vehicle will run 

into a wall. 

The final concern associated with a closed-loop architecture is the ability to 

update the solution with a high enough frequency to complete the problem successfully.  

Naturally, precise system models and high node solutions would rarely require updates, 

but they require lengthy computational periods.  The lengthy computational period is 

acceptable only if the system models are understood to a high precision, i.e. little 

uncertainty.  On the other hand, low-node solutions support expeditious computations 

and due to the frequency of update, they have the ability to support imprecise models and 

high uncertainty.  Logically, the concern with using low-node solutions is the inability to 

capture fine details; however, DIDO node placement and frequent recalculation generates 

a final solution with much greater resolution than that of an open loop trajectory. 

3. A New Problem Definition 

The inherent contradiction between time or distance optimal trajectories and 

uncertainty tends toward a new definition of optimality in the face of real-world 

application.  Uncertainty dictates the use of solution feasibility and safety as key 

measurements of solution optimality for this problem.  Accomplishing this task without 

sacrificing all the advantages afforded by the time or distance optimal solution is the key 
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challenge of the remainder of this section.  After all, requiring only that a solution 

provide a feasible and safe solution is within the realm of several other planning 

techniques. 

4. Solution Approaches 
Several concepts were developed to balance time optimality and uncertainty 

management; they will be presented below.  The following subsection presents the results 

of simulations involving the methods shown here.  Control trajectory interpolation and 

state propagation were used to represent actual system motion.  The basic block diagram 

of the control simulator is shown in Figure 48.  The DIDO generated pre-run trajectory 

serves the purpose of guess generation for the subsequent online calculations, this permits 

low calculation times and the use of low-node solutions.  Each online DIDO calculation 

provides an optimal control trajectory and supplies guess information for the ensuing 

calculation. 

 

 
Figure 48 Block Diagram of the Basic Closed-loop Optimal Control Architecture. 

 

In order to evaluate each method based only on the generated solution, the 

computation time was fixed to one second; therefore, actual system motion was permitted 

for exactly the one second between control solution updates regardless of the 

computation time – evidenced by the clock stop above.  After problem completion, the 
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actual computational times were evaluated, but initially the primary focus was on the 

ability to generate successful closed-loop trajectories in the face of uncertainty.  A more 

thorough evaluation of computation time concerns and solutions is handled in a later 

subsection.  Additionally, the one-second computational time was chosen with 

arbitrariness, and it was not known a priori if that update frequency would be sufficient to 

complete the problem. 

The first closed-loop approach removed the path constraints and added obstacle 

avoidance as a portion of the cost function.  This approach shares some similarities with 

the potential functions and for that reason was referred to as the Penalty Function 

approach.  Optimality was maintained by limiting the permissible maneuver time.  For 

example, a pre-run, open-loop computation with path constraints yields an optimal 

maneuver time, tf
*.   Following the pre-run calculation, the path constraints are removed, 

the cost function is changed to promote obstacle avoidance, and the maximum maneuver 

time is set to tf
*+Δt, where Δt represents the small percentage of time beyond the optimal 

that is permitted for the new maneuver.  In theory, this approach preserves time 

optimality while enabling greater separation from the obstacles. 

Implementation of this technique first requires the development of a desirable cost 

function.  The goal of the cost function was to yield an infinite cost inside the obstacle 

and zero cost at a minimal distance from the obstacle.  One general limitation of current 

optimal control techniques is the need to provide inputs that are continuous and smooth.  

With that limitation in mind, Equation (31) was developed as a double exponential 

equation using the previously derived p-norm shapes to generate the desired obstacle cost.   
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( )( )( ),

,

1
h x yi

PFC

p p

c c p
i

e

x t x y t y
h x y c

a b

F e
−

⎛ ⎞ ⎛ ⎞− −
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= −

 (31) 

Table 2 demonstrates how the double exponential equation generates the desired costs 

based on the vehicle position and ( ),ih x y , the p-norm obstacle shape formula displayed 

in Equation (31) and exampled in Figure 4. 
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Table 2 Mapping of Vehicle Position to Shape-Based Penalty Function Value. 

 Inside Obstacle On Obstacle Outside Obstacle 

( ),ih x y  < 0 = 0 > 0 

( ),ih x y−  > 0 = 0 < 0 

( ),ih x ye
−

 > 1 = 1 < 1 

( ),h x yiee
−

 →∞  = e 1→  

( ),

1
h x yie

PFCF e
−

= −  →∞  = e-1 0→  

 

When the vehicle is traversing a map with multiple obstacles, only the closest obstacle 

should affect the cost function and the resulting vehicle motion.  Mathematically, the 

maximum value of a set of individual obstacle costs cannot be selected; this mathematical 

operation creates non-smoothness.  Instead, the p-norm is used once again; this time to 

isolate the largest cost of all the workspace obstacles.  This concept is evidenced in 

Equation (32).  Small values of the exponent can be used in this case without a significant 

loss in accuracy. 

 
( )( )( ) ( )( )( ) ( )( )( ), , ,1 2

1/

1 1 1
h x y h x y h x yi i i

PFC

pp p p
e e eF e e e
− − −+ +⎛ ⎞= − + − + − +⎜ ⎟

⎝ ⎠
…  (32) 

Figure 49 and Figure 50 show the effect of applying this cost function to a simple 

map with three circular obstacles, and they evidence the numerical maps described by 

Table 2.  The contour plot, Figure 49, also shows the exact size of the obstacles, 

displayed in green.  The resulting obstacle costs are not non-smooth but are close. 
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Figure 49 Contour Plot of Penalty Function for a Simple Three-Obstacle Map. 

 

 
Figure 50 Surface Plot of Penalty Function for a Simple Three-Obstacle Map. 
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The concern with using the Penalty Function approach is the inability to ensure 

the generation of a feasible trajectory mathematically.  Without the use of path 

constraints, it is technically feasible to generate a trajectory that travels through an 

obstacle.  For problems similar to the three-circular obstacle setup presented above the 

probability of such an occurrence is not high because the workspace is uncluttered.  The 

map problem introduced in the Tricycle section, Figure 51, is a good example of a 

problem that can create complications for the Penalty Function approach.   

 
Figure 51 The Maze Problem First Introduced in the Tricycle Section. 

 

Figure 52 shows the maze from the perspective of the Penalty Function function 

presented in Equation (32).  The disadvantages of this approach are evident.  The 

potential field is a shape-based representation of the obstacle, and the cost is based upon 

the vehicle position with respect to the geometric center of the obstacle.  While this is 

effective for shapes with similar dimensions in both the x and y directions such as circles 

and square, it is ineffectual for shapes with one dimension longer than the other, i.e. 

rectangles and ellipses.  This situation provides evidence to the importance of correct 

problem formulation and representation.  Exact maze representation is only accomplished 

with a discontinuous cost function or path constraint; however, optimal control problems 

require continuous and differentiable inputs.   
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Figure 52 Maze Problem Visualized Through the Penalty Function Function. 

 

The result of the shape-based representation is a high cost only at the geometric 

center of a symmetric obstacle; this leaves many avenues for the vehicle to plan a real-

world infeasible trajectory.  A solution to this situation is obstacle representation in a 

manner similar to the polygonal shape function shown previously in Equations (10) - (12).  

That technique created an obstacle shape out of the intersection of multiple line segments, 

each represented by a function gi(x,y).  The polygonal shape method determined obstacle 

interference by a path constraint function, hP,i(x,y), value less than zero.  To make a 

satisfactory cost equation, the original constraint function was multiplied by negative one 

and then used as an exponential, Equation (33).  The p-norm is used in the cost function 

so that the vehicle cost at a particular location is the result of the largest single obstacle 

cost and not the aggregate of all obstacle costs. 
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Table 3 shows how the vehicle positions map to cost values in the new cost function. 
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Table 3 Mapping of Vehicle Position to Polygonal Shape Penalty Function Value. 

 Inside Obstacle On Obstacle Outside Obstacle 

( ),ih x y  < 0 = 0 > 0 

( ),ih x y−  > 0 = 0 < 0 

( ),
,

ih x y
PFC PF e

−

=  > 1 = 1 < 1 

 

The polygonal shape mapping is similar to the p-norm shape mapping, but the 

difference is that resulting polygonal shape cost is not referenced to the geometric center 

of an obstacle.  Rather, it is referenced to the line segments that constructed the shape; 

therefore, it is more portable to any workspace obstacle.  The polygonal method can also 

account for the walls of the workspace, which would normally be a part of any maze.  

Figure 53 presents the maze problem represented with the new polygonal shape cost 

function; the walls were also included.  The representation of the obstacles is improved 

with this technique over the previous.  The initial and final positions were moved to [1, 1] 

and [9, 9] so to not interfere with the walls. 

 
Figure 53 The Maze Problem Represented with the Polygonal Shape Penalty Function. 
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Using the Penalty Function concept the obstacles can be represented using either 

the p-norm shapes or with line segments intersecting to create a polygonal shape.  Both 

methods can actually be used interchangeably within one cost function depending upon 

the representation needs.  Experimentation with this technique is analyzed in the 

following subsection. 

The second approach to solving the closed-loop robotics problem is anecdotal in 

nature and its creation was motivated out of a desire to keep the problem formulation 

unchanged.  Naturally, sensor information pertaining to an obstacle includes uncertainty 

and the degree of uncertainty increases with the range to the obstacle.  Making use of this 

concept, the fictitious obstacle extension or obstacle buffer, which was previously used to 

allow room for the volume of the vehicle to pass, can be altered from a constant to a 

range-dependant value.  When the vehicle is far from the obstacle, the buffer is larger 

than it is when the vehicle is closer, just as the size and location uncertainty of an 

obstacle decreases as distance to the obstacle decreases, Figure 54.  The parallelism 

between the buffer size and sensor error resulted in the name, “Resolving Uncertainty 

Approach.” This decreasing buffer around the obstacle permits error during vehicle 

motion since a vehicle position, which could violate a path constraint in one control 

iteration, would place the vehicle outside the obstacle in the next iteration.  Of course, the 

buffer cannot decrease infinitely and the control update frequency must be adequate to 

correct the errors before impact with the actual obstacle occurs. 
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Figure 54 Example of Range-Dependent Buffer around Obstacles. 

 

The risk of uncertainty causing the vehicle to hit the obstacle or generating an 

infeasible position is only substantial near an obstacle.  For this reason, it is not necessary 

and it is undesirable for the buffer size to change drastically when the vehicle is far away.  

For example, increasing the buffer size linearly with distance would create an optimal 

trajectory that is far from optimal with respect to the actual obstacle size.  The purpose of 

the buffer is not to change the trajectory significantly but to ensure safety.  For this 

reason, it was desirable to have a buffer size whose growth slowed with increasing 

distance, and this led to the use of a fractional exponent.  The basic equation adopted for 

use with the range-dependent buffer is shown in Equation (34) and Figure 55 illustrates 

how the buffer size changes with respect to distance. 

 ( ) 3
1

1 2 4
a

buffer id a d a a= ⋅ + +  (34) 

In this equation, dbuffer is the distance of the buffer from the edge of the actual obstacle, di 

is the distance from the vehicle to the obstacle, and a1 through a4 are all constants 

affecting the buffer characteristics.  Figure 55, a plot of the buffer values as they vary 

with vehicle distance, displays that the majority of buffer change occurs near the obstacle, 

and a minimum buffer value exists so as to minimize the risk of physical collision. 
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Figure 55 Illustration of Relationship between Buffer Size and Distance to Obstacle. 

 

5. Results 

a. Penalty Function 
The Penalty Function approach was first tested in an open-loop.  The first 

step in this method is computation of the time optimal trajectory so that the maximum 

allowable Penalty Function maneuver time can be calculated from the optimum trajectory 

time.  The percentage of the optimum trajectory time given to the new maneuver 

significantly impacts the outcome.   Figure 56 shows the Penalty Function trajectory in 

comparison to the time optimal trajectory when the maximum maneuver time for the 

Penalty Function trajectory is four percent greater than the computed optimum time. 
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Figure 56 Potential Function Trajectory when Maximum Time is Four Percent  

Larger than Optimal Time. 

 

Figure 57 depicts a similar scene except that the Penalty Function trajectory’s maximum 

maneuver time is five percent greater than the optimum time.  Although both maneuvers 

are feasible, the four percent longer trajectory resembles the optimal maneuver but the 

five percent longer trajectory does not.  In general, both trajectories provide greater 

trajectory robustness from the standpoint of avoiding obstacle impact; however, the 

closed-loop architecture presented below used of the four percent longer trajectory since 

it was more complex and time optimal. 

Before proceeding with the closed-loop results, the maze problem was 

revisited.  As was shown in the Tricycle Section, the standard time-optimal problem 

formulation could not solve the maze problem without the benefit of a four-point guess to 

aid with guidance.  The purpose of experimentation was the determination of whether or 

not the Penalty Function approach would change that result.  The cost used in this trial  
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was identical to cost shown in Figure 53.  Utilizing a no-guess initial input, the resulting 

trajectory is shown in Figure 58.  The solution was a local extremal trajectory that 

bisected two walls. 

 

 
Figure 57 Potential Function Trajectory when Maximum Time is Five Percent  

Larger than Optimal Time. 
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Figure 58 A Maze Optimal Trajectory Generated from No Initial Guess. 

 

While the trajectory was infeasible with respect to real-world application, it is apparent 

that the planner was attempting to minimize cost.  Each wall is intersected nearly 

perpendicularly as the planner attempted to shorten the length of stay.  Figure 59 shows 

the optimal result following supply of a four-point initial guess.  Similarly to the previous 

maze results, DIDO easily found local extremal trajectories unless a basic concept of the 

actual solution was provided as the guess.  Once again, this issue may only be a reflection 

of the possession of global knowledge.  Real-world local knowledge problems would not 

initially realize the overall problem complexity, thereby simplifying the solution process. 
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Figure 59 A Maze Optimal Trajectory Generated from a Four Point Initial Guess. 

 

Returning to the closed-loop problem, Figure 60 and Figure 61, the 

positional and control trajectories respectively, depict the initial attempt to solve the 

closed-loop optimal control problem.  The simulated computation time was one second, 

20-node solutions were used, and the interpolation technique was spline interpolation.  

The closed-loop and open-loop trajectories are presented side-by-side for comparison, 

and the optimization problem output-nodes are represented as ‘x’ marks.  The nodes are 

graphed so that the increased resolution of the closed-loop solution is visible.  Despite the 

increased resolution, the closed-loop maneuver does not mimic the open-loop trajectory.  

There are five reasons for the disparity between the two trajectories. 
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Figure 60 Closed-Loop and Open-Loop Trajectory Comparison; Utilizing  

Spline Interpolation. 
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Figure 61 Closed-Loop and Open-Loop Control Trajectory Comparison. 
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The first reason for the closed-loop failure is the use of spline interpolation 

on the control trajectory.  Spline interpolation was used with great success on open-loop 

situations, but the closed-loop approach creates high steering rates.  This creates a 

problem because the spline technique permits overshoot.  The interpolation problem is 

resolved by using MATLAB’s ‘pchip’ interpolation, a shape-preserving, piecewise cubic 

interpolation that permits no overshoot. 

The second reason for the closed-loop maneuver failure is the one-second 

computation time.  How this condition affects the controller is most easily illustrated by 

an example; Figure 62 shows a five-scene instance where computation time causes a 

control failure.  Both the workspace and control trajectories are displayed.  The vehicle is 

traveling along a trajectory when a new obstacle appears, which forces the vehicle to 

begin computing a new trajectory.  In the third scene, the new trajectory is available for 

use; however, the vehicle has traveled for one second since the computation began.  For 

this reason, the control trajectory must be truncated by one second before it is applied.  In 

the fourth scene, the truncated trajectory is performed, but truncation has caused the new 

trajectory to be unsatisfactory in avoiding the threat since part of the new control 

trajectory is lost.  The fifth scene provides the actual trajectory taken from beginning to 

impact, and in the control trajectory a jump in the control input is visible.  This jump 

resembles the many discontinuities or jumps that are shown in Figure 61; this indicates 

that the controller is attempting to perform a maneuver that is not being captured. 

Of course, the simulated scenario uses global information; therefore, no 

new obstacles can pop up to create the problem just explained.  Instead, the third and 

fourth reasons for the closed-loop failure create a similar situation, despite global 

information.  First, the system model is of a low fidelity, i.e. only a kinematic model is 

used; therefore, the controls rates are not limited.  This permits control jumps from one 

trajectory solution to the next.  While this may create implementation issues, it also 

creates the condition where an important portion of the control trajectory occurs within 

the first truncated second.  Second, a low node solution is used, i.e. only 20 nodes, and 

this introduces significant error and disparity into each successive solution.   
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Figure 62 Description of How Calculation Time Affects Trajectory Traveled. 
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Higher-node solutions are possible but are typically undesirable for the increased 

computation time.  This simulation was run on a Dell Dimension® 4400 computer with a 

Windows® 2000 Operating System (OS), an Intel Pentium IV 1.60GHz processor, and 

500MB of Random Access Memory (RAM).  The mean computation time for the 20-

node solution was approximately 15 seconds, greater than an order of magnitude more 

than the simulated clock time.  The computation time concerns will be discussed in detail 

in a later section.  In general, the model fidelity and low-node solution problems can be 

fixed, but they both come at a price of computation time.    

The fifth reason for closed-loop failure is the fixed maneuver time.  The 

closed-loop trajectory deviates from the open-loop trajectory from the initial position, and 

with a fixed maneuver time, there must be a zero sum gain.  The vehicle is traveling at 

maximum speed throughout the trajectory, so if one turn is made wider then the next turn 

must be made shorter.  This condition essentially forces the vehicle to drive over the 

small obstacle.  While the maneuver minimizes cost, it must satisfy all of the endpoint 

conditions.  This problem could be resolved by relaxing the maneuver time.   

Each of the five concerns mentioned above will be addressed in the 

process of resolving the closed-loop method, but solutions will be implemented 

incrementally so that each improvement can be evaluated individually to witness its 

effect.  The only concern that is not addressed in this subsection is the low model fidelity, 

which will be discussed in a separate subsection. 

Figure 63 and Figure 64 present the closed-loop results when the 

interpolation technique is pchip.  It is visible from both trajectories that less deviation 

occurs with respect to the open-loop path; however, enough deviation occurs that the 

fixed maneuver time eventually forces the vehicle to ignore the small obstacle that it hits.  

From this result, it is apparent that the fixed maneuver time must be addressed.  It is 

important to note that this is a case of a static environment and with a dynamic 

environment, the maneuver time would need to be variable anyways. 
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Figure 63 Closed-Loop and Open-Loop Trajectory Comparison; Utilizing Shape-

Preserving Piecewise Cubic Interpolation. 
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Figure 64 Closed-Loop and Open-Loop Control Trajectory Comparison; Utilizing 

Shape-Preserving Piecewise Cubic Interpolation. 
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Relaxation of the maximum maneuver time must be accomplished 

judiciously so that optimality and robustness characteristics are balanced.  To do this, 

increases in maneuver time were related to increases in maneuver cost.  As it was seen 

from the previous examples, a limited maneuver time causes the vehicle to accept high 

obstacle costs in an attempt to satisfy the endpoint condition; therefore, a 25% increase in 

maneuver cost created a two percent increase in maximum maneuver time.  Figure 65 and 

Figure 66 show the closed-loop results when the maximum maneuver time is relaxed.  

From the positional trajectory, it is visible that the vehicle no longer attempts to drive 

directly through the small obstacle in an attempt to reach the finish.  The resulting control 

trajectory more closely follows the open-loop control trajectory, but the non-smoothness 

of the response is indicative of the fact that either the update frequency must be increased, 

the model fidelity must increase, or higher-node solutions must be used. 

 
Figure 65 Closed-Loop and Open-Loop Trajectory Comparison;  

Utilizing Pchip Interpolation and a Relaxed Maneuver Time. 
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Figure 66 Closed-Loop and Open-Loop Control Trajectory Comparison;  

Utilizing Pchip Interpolation and a Relaxed Maneuver Time. 

 

In an attempt to observe the affect of using a high-node solution during 

closed-loop implementation, the discretization was changed from 20 nodes to 30 nodes.  

Figure 67 and Figure 68 show the results from the 30-node solution implementations; the 

average computation time increased to over 25 seconds – an increase of 66%.  The 

increased accuracy of the high-node trajectories improves the ability of the closed-loop 

maneuver to parallel the open-loop trajectory, but at the narrow passage between two 

obstacles, the technique fails.  The reason for failure is clearly the update frequency and 

model fidelity; the control trajectory displays significant non-smoothness as the controller 

attempts to provide erratic evasive maneuvers that are repeatedly truncated.  Logically 

the only two ideas that can resolve the failure of the closed-loop Penalty Function 

approach would be a higher update frequency or greater model fidelity.  While the 

attempt at using higher-node solutions created limited improvement at an increase in 

computational complexity, the work here is not all encompassing.  Future detailed 

analysis could find improved performance at higher node-levels; however, that analysis is 

not endeavored in this research. 
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Figure 67 Closed-Loop and Open-Loop Trajectory Comparison; Utilizing  

Pchip Interpolation, Relaxed Maneuver Time, and 30-Node Solutions. 
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Figure 68 Closed-Loop and Open-Loop Control Trajectory Comparison; Utilizing  

Pchip Interpolation, Relaxed Maneuver Time, and 30-Node Solutions. 
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The next approach to closed-loop resolution was an increase the update 

frequency; the number of nodes used in each closed-loop solution was reduced, again, to 

20.  Incorporating a control frequency of one update every 0.5 seconds resulted in 

maneuvering success around the obstacles, but the optimal control computations slowed 

down near the end of the trajectory, i.e. within 10 percent of the end point, the calculation 

times ballooned to several minutes.  The cause of the computational hardship was the 

fixed maneuver time. Two simple solutions could resolve this issue.  As the endpoint 

condition is approached, the maximum maneuver time can be increased or the control 

architecture can switch to a time-optimal method.  Both approaches allowed the 

maneuver to be successful.  Figure 69 and Figure 70 show the closed-loop maneuver 

when the control architecture is changed to a time optimal technique near the endpoint 

condition.  In general, this closed-loop approach followed the open-loop maneuver with 

much greater precision and the average computation time was approximately six seconds.  

This should be surprising since the previous run involving 20-node solutions averaged 

more than 15 seconds per solution.  The difference is that the end of the trajectory is not 

complex; therefore, computation times decrease to a value between one and two seconds 

near the endpoint manifold.  This condition impacts the average computation time in an 

illusive way. 

 
Figure 69 Closed-Loop and Open-Loop Trajectory Comparison; Utilizing Pchip 

Interpolation, Relaxed Maneuver Time, and Increased Update Frequency. 
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Figure 70 Closed-Loop and Open-Loop Control Trajectory Comparison; Utilizing Pchip 

Interpolation, Relaxed Maneuver Time, and Increased Update Frequency. 
 

b. Resolving Uncertainty Approach 
Implementation of the Resolving Uncertainty Approach was less 

challenging.  The first attempt was successful and the architecture parameters included 

one second simulated computation times, 20 node solutions, and pchip interpolation for 

the control trajectory.  Figure 71 and Figure 72 display the results from the Resolving 

Uncertainty Approach of closed-loop control; the results are compared to the initial 

optimal trajectory computed from the global information of the obstacles before vehicle 

motion.  When at the starting position, the obstacle buffers are at their largest size and 

this causes the optimal trajectory to give a significant distance of safety from the actual 

obstacle.  Each obstacle in Figure 71 is represented by two circles.  The inner circle is 

blue and it represents the actual obstacle.  The outer obstacle is magenta and it represents 

the simulated obstacle.  In most cases, the vehicle traveled close enough to the obstacles 

to make the circles appear as one; the exception is the highest obstacle on the map, which 

maintained the two-circle distinction.     
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Figure 71 Resolving Uncertainty Closed-Loop Results, Compared to Initial  

Optimal Trajectory.  
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Figure 72 Resolving Uncertainty Closed-Loop Control Trajectory, Compared to  

Initial Optimal Trajectory. 
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Despite the inability of the closed-loop response to mimic the initial 

optimal trajectory, success was more easily achieved with this technique than the 

potential field approach.  The one-second update frequency, insufficient for the Penalty 

Function approach, created no problems in this simulation, and the average computation 

time was only 3.7 seconds nearly half of the previous.  Increased model fidelity, 

increased update frequency, and increased solution discretization could all improve 

solution optimality. 

6. Improving Model Fidelity 
The previous closed-loop results displayed significant discontinuities over the 

control trajectory; these discontinuities helped to create path planning difficulties in the 

face of uncertainty and infrequent control updates.  The simplified, kinematic, car model 

was thought to be one of the reasons for the non-smooth results.  Improving model 

fidelity to include limitations on the rate of control change is one possible solution for 

removing “chatter” in the controls.  In changing the model, system response speed and 

overall trajectory optimality are sacrificed for the sake of greater control realism and 

insensitivity to uncertainty.   

Placing limits on the rate of control variable change in an optimal control problem 

requires manipulation of the problem formulation.  The actual system controls, velocity 

and steering angle, become state variables and the rate of change of velocity and steering 

angle become the controls, Equation (35). 
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 (35) 

Essentially, the original control variables are now required to be smooth while the new 

control variables, i.e. the time derivative of old control variables, are allowed to be non-

smooth.  Propagation of the vehicle dynamics remains unchanged despite the change in 

problem formulation.  While v  and φ  can solve the chatter problem, they provide 

unnecessary information with respect to the control of the robot; therefore, propagation of 

vehicle position and orientation is still accomplished with the velocity and steering angle.  
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In general, the increase in dimension of the state vector increases the complexity of the 

optimal control problem, and the computation time was expected to worsen.   

Initial tests of the new problem formulation occurred on the three-obstacle 

problem exhibited above for the closed-loop architecture demonstration.  The control 

method utilized for the test was the resolving uncertainty approach.  Figure 73 displays 

the control trajectory solution for the three-obstacle problem using the new model; this 

can be compared directly to Figure 72, the old control trajectory for the same problem.   

 

0 20 40 60
-0.2

0

0.2

V
el

oc
ity

 (m
/s

)

 

 

Closed-Loop Open-Loop

0 20 40 60-40
-20

0
20
40

Time (sec)

φ  
(°

)

 
Figure 73 Closed-Loop Positional Trajectory Using Resolving Uncertainty  

Approach, Improved Model, and 1.0 Second Update Rate. 

 

In both results, pchip interpolation, 20-node solutions, and one-second update times were 

used.  The new model produced a control trajectory that was more smooth and displayed 

greater resemblance to the open-loop trajectory than the old model.  The drawback was a 

loss of computational speed; the average computation time was 5.5 seconds. 

The results shown above demonstrate the capability of the new model to solve the 

problem that was solved without the increase in model complexity; therefore, the 
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important assessment tests the new model under a lower update frequency.  Figure 74 

through Figure 76 show the closed-loop results of the improved car model when the 

control updates every 1.5 seconds, an increase of 50%.  The controller was successful 

under this model; an achievement not possible before.  In fact, the closed-loop 

trajectories display good resemblance to the open-loop trajectories despite the drop in 

update frequency.  These results display the possible advantages of increasing model 

fidelity with the resolving uncertainty method, and it was important to test whether the 

same was true of the Penalty Function method. 

 
Figure 74 Closed-Loop Positional Trajectory Using Resolving Uncertainty  

Approach, Improved Model, and 1.5 Second Update Rate. 
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Figure 75 Closed-Loop Angular Trajectory Using Resolving Uncertainty  

Approach, Improved Model, and 1.5 Second Update Rate. 
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Figure 76 Closed-Loop Control Trajectory Using Resolving Uncertainty  

Approach, Improved Model, and 1.5 Second Update Rate. 
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Figure 77 through Figure 79 display the closed-loop results of the Penalty 

Function approach when incorporating a one-second update time and the new car model.  

The successful results here can be compared directly to the failure presented in Figure 65; 

the only different between the two problems is the model fidelity.  While the average 

computation time increased to 13.5 seconds, the closed-loop response transformed from 

complete failure to near equality to with the open-loop response.  From the results 

presented here, it is apparent that limiting the rate of change of the controls can 

significantly benefit the closed-loop response, so long as adequate computational time is 

available to accommodate the increased complexity. 

 
Figure 77 Closed-Loop Positional Trajectory Using Penalty Function  

Approach, Improved Model, and 1.0 Second Update Rate. 
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Figure 78 Closed-Loop Angular Trajectory Using Penalty Function  

Approach, Improved Model, and 1.0 Second Update Rate. 
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Figure 79 Closed-Loop Control Trajectory Using Penalty Function  

Approach, Improved Model, and 1.0 Second Update Rate. 
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7. Robustness through Local Knowledge 

Up until this point, global knowledge was assumed available and the closed-loop 

architecture was tested against a static environment.  Numerical error in interpolation and 

propagation created the uncertainty in the close-loop system.  Real systems have limits to 

the range of sensor information; therefore, a local knowledge situation is more likely in 

real applications.  Simulating a local knowledge condition benefits closed-loop analysis 

in two ways.  First, it incorporates a greater sense of reality, and second, it offers a test of 

robustness.  Not knowing the location of all obstacles a priori, will require the system to 

make more drastic correction maneuvers during operation and the success or failure of 

such maneuvers provides an indication of the system’s capability. 

A simple local knowledge problem was devised using the same three circular 

obstacle problem from before.  The car begins the trajectory at the point (0,0); therefore, 

the larger obstacle’s position is known at the commencement of the maneuver.  The 

smaller obstacles’ positions are known until after the vehicle moves from behind the first.  

Some realism is lost on the fact that entire obstacle position and dimension are known 

instantaneously; however, localization and mapping problems were not within the scope 

of this work.   

Figure 80 shows the closed-loop results of the Resolving Uncertainty method 

under the condition of local knowledge.  The characteristics of this simulation, including 

the number of nodes used, the update frequency of 1.0 second, and the three-variable 

state vector, are equivalent to the results shown in Figure 71; the key difference being 

that the local knowledge case was unsuccessful.  The reason for failure is the lack of 

ability to limit the rate of control change and the slow update rate, both of which have 

been identified previously.   
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Figure 80 Resolving Uncertainty Method Results for the Local Knowledge Problem. 

 

Figure 81 through Figure 83 display closed-loop results for a similar problem 

formulation involving the Resolving Uncertainty method; however, the update frequency 

is increased such that an update is received every 0.5 seconds.  The result was a 

successful trajectory.  The availability of local information is visible from the open-loop 

trajectory that was calculated prior to the motion of the vehicle; that trajectory travels 

through a smaller obstacle that becomes visible after  the maneuver begins. 
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Figure 81 Local Knowledge Problem Solved by the Resolving Uncertainty Method  

and Using a 0.5 Second Update Rate. 
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Figure 82 Orientation Trajectory for a Local Knowledge Problem Solved by the  

Resolving Uncertainty Method and Using a 0.5 Second Update Rate. 
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Figure 83 Control Trajectory for a Local Knowledge Problem Solved by the  

Resolving Uncertainty Method and Using a 0.5 Second Update Rate. 

 

A similar test was run using the Penalty Function method.  Figure 84 through 

Figure 86 show the results of the Penalty Function application to the local knowledge 

problem.  The application parameters used here were equivalent to the results shown in 

Figure 69; this includes a 0.5-second update rate, 20-node solutions, and a three-variable 

state vector.  When the previously unseen obstacle became visible, the total maneuver 

cost increased because the trajectory traversed an obstacle.  The increase in maneuver 

cost permitted a relaxation of maximum maneuver time, as discussed previously, and this 

allowed the controller to plan a trajectory away from the new obstacles.  The trajectory 

generated here is less time optimal that the Resolving Uncertainty trajectory; however, 

the Penalty Function trajectory enjoys greater robustness, i.e. the trajectory is less 

susceptible to failure due to uncertainty.  The average computation time experienced in 

this simulation, less than four seconds, was improved over the same problem with global 

information; the two second average improvement can be attributed to the fact that the 

new trajectory requires less complicated maneuvers. 



99

 
Figure 84 Local Knowledge Problem Solved by the Penalty Function Method. 
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Figure 85 Orientation Trajectory for a Local Knowledge Problem Solved by the  

Penalty Function Method. 
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Figure 86 Control Trajectory for a Local Knowledge Problem Solved by the  

Penalty Function Method. 

 

The next simulations evaluated the effect of incorporating the five-DOF state 

vector for limiting the rate of control variable change.  The method evaluated was the 

Resolving Uncertainty technique and the results are presented in Figure 87 through 

Figure 89.  The maneuver was successful, but most importantly the use of the five-DOF 

state vector permitted a decrease in update frequency to one update every 1.5 seconds.  

This is a significant improvement to the required 0.5-second update rate of the three-DOF 

local knowledge problem.  In addition, the average calculation time decreased from 5.5 

seconds for the global knowledge case to 5.1 seconds.  The improvement in computation 

time reflects the fact that maneuver complexity decreases.  In the case of local knowledge, 

the vehicle only has one obstacle to avoid as the maneuver commences, and the other two 

obstacles only appear after the first obstacle is nearly passed. 
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Figure 87 Local Knowledge Problem Solved by the Resolving Uncertainty Method and 

Using a Five-DOF State Vector. 
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Figure 88 Orientation Trajectory of a Local Knowledge Problem Solved by the 

Resolving Uncertainty Method and Using a Five-DOF State Vector. 
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Figure 89 Control Trajectory of Local Knowledge Problem Solved by the Resolving 

Uncertainty Method and Using a Five-DOF State Vector. 

 

Figure 90 through Figure 92 show the local knowledge problem solved with the 

Penalty Function method and the five-DOF state vector.  The update frequency can be 

decreased in this simulation, but the result provides little meaning since the maneuver 

requires no complex movements near the obstacles.  The average computation time 

during this simulation was 3.7 seconds, a ten-second reduction from the global 

knowledge case.  The cause of this significant improvement is the same as the previous 

cases; however, the original computation time was particularly high, 13.5 seconds.  It can 

be concluded that the local knowledge problem actually simplifies the optimal control 

calculation; therefore, computation times can actually improve under the more realistic 

simulations.  Greater analysis is necessary to evaluate planning behavior under other 

obstacle configurations and situations. 
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Figure 90 Local Knowledge Problem Solved by the Penalty Function Method and  

Using a Five-DOF State Vector. 
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Figure 91 Orientation Trajectory of a Local Knowledge Problem Solved by the  

Penalty Function Method and Using a Five-DOF State Vector. 
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Figure 92 Control Trajectory of a Local Knowledge Problem Solved by the  

Penalty Function Method and Using a Five-DOF State Vector. 

 

8. Computation Time 
Throughout the closed-loop research, the control computation times were 

documented, but they had no effect on the operation of the path planner.  In a real-world 

application, the computation time would be vital to successfully controlling the vehicle; a 

fact demonstrated several times during this research by use of an inadequate update 

frequency.  The reason for not including the computation times was twofold.  First, this 

work intended to illustrate only the applicability of these techniques; successful 

implementation was a future goal.  Second, several techniques are currently available to 

speed the process of optimal control computation, and the necessary time was not 

available to incorporate all of these improvements. 

A networked, Dell Dimension® 4400 computer with a Windows® 2000 OS, an 

Intel Pentium IV 1.60GHz processor, and 500MB of RAM was used during this research.  

Table 4 displays mean calculation times for simulations involving global information.  

Generally, the Penalty Function approach requires more time than Resolving Uncertainty; 

the same is true of the five-DOF state vector and higher-node solutions. 
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Table 4 Computation Times (All Simulations Use Global Information) 

Update 
Rate (sec) Problem Closed-Loop 

Technique 
State Vector 

DOF 
Number 
of Nodes 

Mean Calc. 
Time (sec) 

1.0 Three-Circular 
Obstacles 

Resolving 
Uncertainty 3 20 3.7 

0.5 Three-Circular 
Obstacles 

Penalty 
Function 3 20 6.2 

1.0 Three-Circular 
Obstacles 

Resolving 
Uncertainty 3 40 6.2 

0.5 Three-Circular 
Obstacles 

Penalty 
Function 3 40 5.6 

1.0 Three-Circular 
Obstacles 

Resolving 
Uncertainty 3 60 8.5 

0.5 Three-Circular 
Obstacles 

Penalty 
Function 3 60 10.2 

1.0 Three-Circular 
Obstacles 

Resolving 
Uncertainty 5 20 5.5 

1.0 Three-Circular 
Obstacles 

Penalty 
Function 5 20 13.5 

 

Given that these times are the mean computation times and that the required update rates 

were between 0.5 and 1.5 seconds, it is safe to say that an improvement in computation 

time of at least one order of magnitude is necessary to consider real world application.   

An order of magnitude improvement may seem unrealistic, but several methods 

exist to cover this in the near future.  First, the computer utilized for these test results was 

more than two years old.   At the time of this research, commercially available computers 

reach speeds in excess of 4 GHz, so a simple remedy that would more than halve the 

listed computation time is an upgrade in hardware.  Second, a significant software burden 

limits the productivity of the current hardware setup.  The aforementioned computer 

operates with a Windows® 2000 operating system and the DIDO program functions with 

MATLAB code.  In the thesis by Moon [47], it was concluded that converting DIDO to a 

C program and running it off of a Linux-based computer would improve the operating 

times by a factor of 10 to 100.  A similar solution is proposed in [45].  Third, the coded 

optimization problem can be optimized for computation speed through problem 
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reformulation or detailed scaling and balancing [48, 39].  Fourth, the DIDO optimization 

tool, which is used in this work only as a means of evidencing path planning ideas, has 

several upcoming enhancements planned that can and will improve solution speed [49].  

In the very least, newer versions will permit the user to input the problem Jacobian.  This 

will save computation time because current versions find it numerically. 

To instantiate these claims with a simple example, the global information 

problems were rerun on a newer computer.  The computer was a Dell GX280 with 1GB 

RAM, a 3.8 GHz processor, and the operating system was Windows XP.  Under identical 

parameters to the results shown in Table 4, a problem was run that utilized the Penalty 

Function method with 20-node solutions, a 0.5-second update rate, and a three-DOF state 

vector.  A histogram of the computation times is shown in Figure 93.  

 

0 2 4 6 8 10
0

10

20

30

40

50

60

Computation Time (sec)

N
um

be
r o

f O
cc

ur
re

nc
es

 
Figure 93 Histogram of Computation Times for Global Knowledge Problem Solved  

with Penalty Function Method and Three-DOF State Vector. 

 

The resulting average computation time was 2.6 seconds, roughly 40% of the previous 

computation time.  A similar simulation was run using the Resolving Uncertainty method, 
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with the parameters equivalent to those shown in Table 4.  The average computation in 

this simulation was 1.4 seconds.  Once again, this is roughly 40% of the computation 

time recorded from the original simulation.  This is clearly close to the one-second 

required update rate; the maximum recorded computation time was approximately 3.5 

seconds.  While this simple hardware change does not achieve the order of magnitude 

improvement needed, to provides a 60% improvement using hardware technology over 

one year old.  By utilizing current hardware and incorporating the other improvements 

mentioned above, the operation of real-time, online optimal path planning is within the 

realm of the possible. 
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Figure 94 Histogram of Computation Times for Global Knowledge Problem Solved  

with Resolving Uncertainty Method and Three-DOF State Vector. 
 
C. CONCLUSIONS 

The main thrust of this work was geared toward the application of optimal control 

techniques to the path planning problem of unmanned vehicles, and this section evaluated 

that problem with significant depth from the standpoint of an unmanned ground vehicle.  

The open-loop analysis built upon the similar work presented for the tricycle.  Constraint 
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representation and problem formulation differed little; however, a variety of problems 

were evaluated including moving targets, moving obstacles, complex, close-quarters 

maneuvering, and planning under the condition of a control failure.  Other path planning 

techniques would not be able to solve this assortment of problems so quickly and easily; 

this provides a window to the versatility of optimal control methods. 

Control of an unmanned vehicle by the generated optimal control trajectory would 

require a means to handle uncertainty or new sensor information.  Two basic 

architectures exist to achieve this goal.  First, a path tracking program could follow a 

continually updated optimal trajectory.  Second, the optimal control method could 

directly provide the control input.  In either case, the presence of uncertainty changes the 

problem formulation since the standard optimal control problem with path constraints can 

suffer from solution infeasibilities in the face of uncertainty.  This concern led to a 

redefinition of path optimality to include a balance between time optimality and path 

feasibility.   

Two simple techniques were introduced to circumvent the issues that the standard 

optimal control problem has with uncertainty.  One method, the Penalty Function 

approach, removed the path constraints and added an obstacle proximity penalty to the 

cost function.  The second method, the Resolving Uncertainty approach, treated the 

obstacle area with a level of uncertainty that was related to the distance between the 

obstacle and the vehicle.  Adding a zone of exclusion or buffer to each obstacle provided 

the room necessary to account to for the system uncertainty.  Neither approach is 

intended to be the only solution to this problem; however, they do to evidence the fact 

that the uncertainty problem can be surmounted.  Each method was simulated using a 

Runge-Kutta algorithm to propagate the state variables and the results were evaluated to 

observe several characteristics including feasibility, computation time, robustness, and 

required update rate.  This work also included analysis on the effects of increased model 

fidelity; the state vector was increased to five variables so that the rate of control variable 

change could be limited.  In general, the increase in state vector size permitted a less 

frequent update in control solution; however, the computation time also increased. 
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All path planning simulations involved a clock stop so that the simulated vehicles 

did not incur a loss of adequate control from the extended computation times.  Analysis 

of the actual computation times revealed solution updates that arrived an order of 

magnitude slower than the experimentally derived minimum update rate.  Several 

solutions were proposed that could resolve this discrepancy in future work that involve 

currently available technologies and methods.  As a simple example, two problems were 

executed on a newer computer system and a 60% reduction in computation time was 

recorded. 

Significant analysis is required in the future, before these path planning 

techniques can be implemented on a real system.  Ignoring the other robotics related 

problems, i.e. sensing, mapping, and localization, several concerns still exist.  Complex 

obstacle configurations and poor initial guesses have been shown to create infeasible and 

incomplete solutions with DIDO; further research must explore how to mitigate this 

concern.  One concept that may alleviate this concern during actual implementation is 

dual micro-processor utilization, Figure 95.   

 

 
Figure 95 Illustration of the Dual Micro-Processor Concept. 
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In this concept, one processor is used for in an open-loop manner, and it provides the 

initial guess to the closed-loop processor.  It also provides the optimal maneuver time, t*, 

for the maximum allowable maneuver time in the case of the Penalty Function approach.  

The open-loop processor inputs are the state and obstacle information.  With no initial 

guess, the solution would take longer, but it would not be biased or suffer from a poor 

previous solution.  This concept may not solve all of the infeasibility problems, but it can 

offer several advantages.  More simulation is necessary to understand where the 

weaknesses exist. 

In conclusion, this section illustrates two key points.  First, the technology and 

techniques are available to incorporate optimal control techniques into the path planning 

problem of robotics.  Second, optimal control techniques have the capability to be used 

successfully to solve the path planning problem, and they provide many advantages over 

past methods. 
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V. UNMANNED AERIAL VEHICLE (UAV) 

A. MOTIVATION 
Unmanned Aerial Vehicles (UAVs) are already integral assets to battle field 

commanders in the military.  Their popularity has inspired significant research and 

development, i.e. the Air Force’s Predator and Global Hawk and the Army’s Future 

Combat System (FCS) UAVs.  Usually these vehicles are piloted remotely and even 

though autonomous offensive actions are unlikely to be incorporated into their design in 

the near future, greater autonomy can allow UAVs to require less human oversight and 

achieve better performance.  Autonomous capabilities would enable UAVs to operate, 

maneuver, or land successfully without an established communications link, providing 

greater reliability.  Further, reduced manpower needs, in terms of watchstanding and 

training, equates to significant monetary savings.  Instead of a watchstanding team 

responsible for one UAV, one team could be responsible for a group or swarm of UAVs. 

With respect to the DIDO implementation of the UAV problem, the addition of a 

third spatial dimension creates little change with respect to formulation.  Transforming 

the code from a car problem to the UAV problem occurs in a matter of minutes to hours, 

instantiating the portability of the DIDO algorithm.  The same constraint representation 

principles derived for the tricycle and car are easily adapted for the three dimensional 

space of the UAV, and this fact is leveraged to analyze a downtown scenario for a UAV.  

Most UAVs operate at an altitude too high for concern of obstacles such as buildings, but 

this is driven by their large size and remote nature of control.  Smaller, personnel-carried 

and operated UAVs with autonomous guidance, navigation, and control (GNC) systems 

onboard could allow greater combat flexibility and are more inline with FCS concepts.  

These future systems demand the ability of tasking at the strategic level, and an 

autonomous GNC system would be a key portion of meeting this requirement. 

B. PROBLEM DEFINITION 
This research employs simple UAV kinematics, which, in part, reflects the fact 

that future personnel-carried UAVs will not necessarily resemble contemporary airplane 

dynamics.  By developing optimal kinematic trajectories, an online path tracking system 

could follow the generated trajectory. 
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Figure 96, which is modified from [50], diagrams the UAV kinematics utilized.  

There are three state variables and three control variables.  The state variables represent 

the three spatial degrees of freedom.  The three control variables are the vehicle velocity, 

v, the flight path angle, γ, and the heading angle, ξ.  The flight path angle is measured 

from the local horizontal to the velocity vector, and the heading angle is measured from a 

reference heading – e.g. due North – to the velocity vector.  
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Figure 96 UAV Kinematic Diagram (After: Ref. 50) 

 

The scaled problem formulation is presented in Equation Set (36) and (37).  The 

scaling constants are apparent as the capital version of the lower case variables. 
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The path constraints, ( ), ,ih x y z , are represented in a manner identical to the car and 

tricycle problems – p-norm technique – with the addition of the third spatial dimension.  

This permits the construction of a simulation city environment. 

 By creating the control Hamiltonian, the problem is rewritten as Equation Set (38). 
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The Lagrangian of the Hamiltonian incorporates the control and path constraints and it is 

presented in Equation (39). 
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The Karush-Kuhn-Tucker (KKT) Conditions for the Hamiltonian Minimization 

Condition (HMC) are given in Equation Set (40). 
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 (40) 

The UAV will most often fly at a non-maximal flight path angle; therefore, γμ  is 

expected to equal zero throughout most trajectories.   On the contrary, given the time 

optimality criterion, the maximum velocity should be used throughout the trajectory, and 

this should force vμ  to be greater than zero.  Equation (41) shows the derivation of the 

Adjoint Equation, and this in conjunction with the KKT conditions implies that the 

costates remain constant unless the trajectory touches an obstacle. 
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The Terminal Transversality Condition adds no new boundary condition 

information, but the Hamiltonian Value Condition and Hamiltonian Evolution Equation 

combine to generate the Hamiltonian constraint presented in Equation (42). 

 ( ), , , , 1H x u tμ λ −=  (42) 
C. SOLUTION VALIDATION AND RESULTS 

The results presented below utilize the starting and ending points presented in 

Equation (43). 

 [ ] [ ]0 0 2.5 10 10 1T Ti fx x= =  (43) 

Figure 97 presents the DIDO-generated, time-optimal UAV trajectory from several views. 
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Figure 97 UAV Kinematic Trajectory through City Environment. 
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The buffer extended around the obstacles during constraint definition is obvious from the 

final trajectory.  In real-world implementation, this concept could be considered a factor 

of safety.  Figure 98 graphs the DIDO-generated solution side-by-side with the 

propagated solution to demonstrate feasibility. 

 
Figure 98 Propagated UAV Trajectory and DIDO-Generated UAV Trajectory. 

 

The following four pages present the remainder of the necessary conditions and 

trajectory information in Figure 99 through Figure 104 including, in order of appearance: 

the control trajectory, the Hamiltonian value, HMC verification, the path covectors, the 

control covectors, and the costates.   

The velocity is at a maximum value throughout the trajectory, and this forces vμ  

to be a positive value.  The remaining control values are presented in degrees to aid in 

understanding, and the numerical variation of the solution is visible.  This variation could 

be smoothed before implementation.   

The Hamiltonian value averages to negative one but varies about this position.  
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Figure 99 Control Trajectory for Optimal UAV Trajectory. 
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Figure 100 Hamiltonian Value for Optimal UAV Trajectory. 
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Figure 101 Hamiltonian Minimization Condition Verification for Optimal UAV 

Trajectory. 
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Figure 102 Path Covectors for Optimal UAV Trajectory. 

 

The HMC verification further evidences the numerical error present in the system 

since all values should be zero.  This figure alongside the figure for the path covectors 
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shows more information though.  Obstacles one through five represent typical buildings 

and have sharp corners.  Obstacle six has no corners, a cylinder.  Obstacle six is 

encountered at an approximate scaled time of 0.8 while the other obstacles are 

encountered near times of 0.35 and 0.6.  Optimization theory indicates that the associated 

path constraint covectors will be active and the related costates will change at these times, 

Equation (41), Figure 102, and Figure 104.  These times also visually coincide with 

points of numerical imprecision in the results.  This conclusion is reflected in Figure 100 

and Figure 101 for the Hamiltonian and HMC verification respectively where the 

numerical variations occur near the scaled times of 0.35 and 0.6.  In particular, the 

imprecision is most directly coincident with the vehicle’s interaction with the buildings 

possessing sharp corners.  To explore this concern, the effect of obstacle representation in 

the UAV model will be studied more in the future. 
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Figure 103 Control Covectors for Optimal UAV Trajectory. 
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Figure 104 Costates for Optimal UAV Trajectory. 

 

D. CONCLUSIONS 

The UAV trajectory results presented here for a busy city environment are 

feasible, but indicate some error with respect to optimization. The source of this error 

appears to be associated with obstacle representation, which needs to be explored in 

future work.  In general, the generation of a feasible trajectory is the most important key 

to real-world implementation and even a near-optimal result would be readily accepted.  

Further iterations of this analysis should evaluate the usefulness of modeling specific 

aircraft dynamics and control surfaces during problem definition.   
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VI. INVERTED PENDULUM 

A. MOTIVATION 
The inverted pendulum is a classic, nonlinear control problem.  In its most generic 

form, it offers two unknowns and one control variable thus comprising an under-

controlled system.  While this problem is general, it shares many characteristics with 

other real-world control problems and is therefore an often-studied experimental problem.  

The particular control problem at the crux of this section is the time optimal inversion of 

a pendulum.  The real-world system that served as a basis for simulation modeling is the 

Educational Control Products (ECP) Model 205a Torsional Control System with A-51 

Inverted Pendulum Accessory, Figure 105, an inverted pendulum on a rotating base. 

 
Figure 105 ECP Model 205a Torsional Control System with A-51 Inverted  

Pendulum Assembly. 
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The motivation for this particular portion of the research is primarily 

advancement in the knowledge and capability of utilizing optimal control methods for 

solving complex control problems.  This problem is solved without unnecessary 

simplification or assumptions.  The eventual goal of this work would be the application 

of these techniques to open-loop and closed-loop control of a pendulum.  The primary 

challenges associated with this problem are the intricate dynamics, inherent instability, 

and a small time-constant.   

The Torsional Control System included a MATLAB-based controller that served 

as an interface to the electric motor and permitted evaluation of user-defined control 

architectures.  Specifically the Inverted Pendulum Assembly included a controller that 

could invert the pendulum successfully using two distinct modes of operation.  The first 

mode successively pumped energy into the pendulum to iteratively raise its height of 

swing.  The second mode, a simple PD technique, became active once the pendulum was 

within a certain angular threshold of complete inversion.  This controller allowed for 

solution comparison once optimal results became available.  Initial runs of the controller 

inverted the pendulum in approximately 20 seconds, but this was later refined, under 

separate research, to approximately 1.5 seconds. 

B. PROBLEM DEFINITION 
The inverted pendulum system is pictured in Figure 106.  The only control 

variable is the torque input into the base disk, actuated by an electric motor.  Supports for 

the system physically limit the rotation of the base disk to ±65° and input voltage to the 

electric motor is limited to a maximum magnitude of 5 Volts which translates to 

approximately 1.5N-m.  All parameters and variables used to describe the problem are 

presented in Table 5.  For the sake of brevity, the derivation of the moments of inertia for 

the disk and pendulum is not included here but it can be found in [51]. 
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Figure 106 Inverted Pendulum on a Rotating Base Model. 

 

Table 5 Inverted Pendulum Parameters and Variables. 
Symbol Description 

Mp Mass of pendulum 
lcm Distance from rotation point to c.m. 
rd Radius of disk 
g Acceleration due to gravity 

Jy,d Inertia of disk about y-axis 
Jx,p Inertia of pendulum about x-axis 
Jy,p Inertia of pendulum about y-axis 
Jz,p Inertia of pendulum about z-axis 
T Input torque to base disk 
θd Angular position of the disk 
θp Angular position of the pendulum 

 

The system’s equations of motion, found by Lagrange’s Equation and the kinetic and 

potential energy, are shown in Equations (44)-(51).   

 p cm dA M l r=  (44) 

 2
, ,x p y p p cmB J J M l= − +  (45) 

 p cmC M gl=  (46) 

 2
,z p p cmD J M l= +  (47) 
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 2
,y d p dE J M r= +  (48) 

 2
,x p p cmF J M l= +  (49) 
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 (51)  

The variables are then scaled and the problem statement is presented as Equation (52).  

All scaling factors are represented by a ‘U’ and the subscript denotes the particular 

variable to which it applies.  The variables for the disk and pendulum angular positions 

are not scaled because these quantities are measured in radians and scaling is unnecessary.  

The torque and rotation limitation discussed before are introduced into the problem as a 

control and path constraints.   
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C. NECESSARY CONDITIONS 

 Equation (53) presents the inverted pendulum Hamiltonian and resulting 

minimization problem. 
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The constraints are accounted for mathematically in the Lagrangian of the Hamiltonian, 

Equation (54). 

 ( ) 1 2 3 4 1 2, , , , ( , , ) ( , , )t t
p d d

p d

U UH x u t f x u t g x u t uU Uμ λ λθ λ θ λ λ μ μ θ= + + ⋅ + ⋅ + + (54) 

The Hamiltonian Minimization Condition (HMC) is found by taking the partial 

derivative of Equation (54) with respect to the control variable.  The HMC and the KKT 

conditions are presented in Equation (55). 



126

 

( )3 2

4 1
2 2

2 2 2
,

2

,

max

1 max max

max

,max

2

cos( )
0

sin ( ) cos ( )

1

sin ( ) cos ( )

0
0
0

0
0

p

p p

p p

T t

p y p

T t

d
y p

d d

AH
u E D

E F

U U
U D J D A

U U
U AJ

D

for T T
for T T T
for T T

for
fo

θ
λ

θ θ

λ μ

θ θ

μ

θ θ
μ

−

−

−

−

⋅∂
= = +

∂ + ⋅ + ⋅

+

+ ⋅ +

⎡ ⎤⋅
⋅ ⎢ ⎥

⋅ ⋅ −⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⋅ ⎢ ⎥⋅
⎢ ⎥⎛ ⎞

− ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎧≤ =
⎪= < <⎨
⎪ ≥ =⎩

≤ =
= ,max ,max

,max0
d d d

d d

r
for

θ θ θ
θ θ

−

⎧
⎪ < <⎨
⎪≥ =⎩

 (55) 

In this case the Adjoint Equation leads to complex formulas for λ , providing 

little information with the exception of Equation (56). 

 2 2λ μ−=  (56) 

With an endpoint specification for each of the state variables, the Terminal Transverality 

Condition (TTC) also provides no new information.  Lastly the Hamiltonian Evolution 

Equation (HEE) and Hamiltonian Value Condition (HVC) lead to the common result for 

time optimal problems presented in Equation (57). 

 ( ), , , , 1H x u tμ λ −=  (57) 
D. RESULTS 

The optimal inversion trajectory received from DIDO is presented in Figure 107 

and Figure 108.  The optimal maneuver time is less than 0.7 seconds. 
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Figure 107 Pendulum and Disk Angular Trajectories for Optimal Inversion Maneuver. 
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Figure 108 Pendulum and Disk Angular Velocities for Optimal Inversion Maneuver. 
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The optimal torque trajectory is displayed in Figure 109.  The bang-bang nature of 

the controls is intuitive given the optimality criteria, time, and the linear relationship 

between the controls and the dynamics. 
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Figure 109 Torque Trajectory for Optimal Inversion Maneuver. 

 

Figure 110 shows the control covector with the control trajectory superimposed in the 

background.  This shows how the control covector acts as a switching function for the 

control trajectory.  A positive value for 1μ  is associated with a positive value for the 

control variable and vice versa. 

 Figure 111 displays the Hamiltonian value throughout the trajectory.  The 

Hamiltonian oscillates about a value of negative one which is its time average, but 

generally validates the necessary condition in Equation (57). 
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Figure 111 Hamiltonian for Pendulum Inversion Problem. 
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Figure 112, plot of the costates, and Figure 113, plot of the path covector, 

instantiate Equation (56) which equates the change in the second costate, 2λ , to the 

negative of the second covector, 2μ .  From the KKT conditions, 2μ  only becomes active 

when the system is at an extremal disk angular position, and for this reason 2λ  must be 

constant whenever dθ  is not equal to the minimum or maximum.  The extremal disk 

angular position is identified in Figure 107 to occur at a normalized time of 

approximately 0.75.  The value is similarly verified by the activation of the path 

constraint covector, 2μ , and a change in the costate for the disk position, 2λ . 
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Figure 112 Pendulum Inversion Maneuver Costates. 
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Figure 113 Pendulum Inversion Maneuver Path Covector. 

 

Solution feasibility is verified with a Runge-Kutta algorithm and the resultant 

propagated and DIDO generated trajectories are presented together in Figure 114 and 

Figure 115.  The difference between the two graphs is minimal and it can be attributed to 

interpolation error. 
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Figure 114 Pendulum Position Feasibility Verification. 
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Figure 115 Disk Position Feasibility Verification. 
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Figure 116 provides multiple snapshots of the inversion maneuver so that it can 

be assessed from a visual perspective.  The disk is performs four successive turning 

maneuvers to invert the pendulum, the first eight frames below.  The remainder of the 

frames exhibits the slowing of the pendulum’s momentum. 

 
Figure 116 Images of Optimal Inversion Maneuver. 

 

E. CONCLUSIONS 

The open-loop solution generated above could be utilized immediately with the 

inverted pendulum assembly, but its uses would be restricted to open-loop 

implementation.  Ensuring continual inversion would dictate the use a technique similar 

to the PD feedback method mentioned previously once the optimal trajectory is 
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completed.  The optimal control trajectory would improve the inversion time and the 

alternate feedback method would maintain the pendulum at its final position and correct 

for minor disturbances.  Eventual goals include the incorporation of an online optimal 

controller, and with the rate of computer advancements and the upcoming advancements 

in the DIDO algorithm it is not illogical to think that this can occur within the span of a 

few years.   
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VII. CONCLUSIONS 

A. RESEARCH CONCLUSIONS 
This work presented numerous examples of systems that can benefit from the 

application of optimal control methods to the path planning and motion control problems.  

In the past, path planning techniques were capable of producing feasible trajectories in an 

efficient manner; however, optimality and the satisfaction of complex constraints were 

sacrificed.  Meanwhile, optimization methods have long been considered to provide 

attractive results, i.e. feasible, optimal, and capable of satisfying any constraint, but they 

were understood to be limited by solution convergence problems and inhibitive 

computational complexity.  Advances in computer hardware and optimization algorithms 

have made many of these concerns a thing of the past, and this thesis provides evidence 

to this claim. 

While several systems, e.g. tricycle, four-wheeled car, aerial vehicle, and 

pendulum, were analyzed in this work, the main focus was on a unmanned ground 

vehicle concept.  Open-loop, time-optimal simulations were run to demonstrate the 

capability of the system to handle various scenarios involving dynamic environments and 

complex constraints, thereby providing evidence to the fact that this approach is rapidly 

reconfigurable to the current situation.  Real-world applications of unmanned and 

autonomous systems require the ability to handle uncertainty during normal operation.  

Two concepts were detailed in an effort to tackle the reality of uncertainty.  First, a 

balance between optimality and trajectory robustness was made such that solution 

extremals and uncertainty could not drive the vehicle into a dangerous or infeasible 

condition.  Second, feedback was incorporated as a means to update repeatedly the 

control trajectory of the vehicle.  This approach allowed for the successful completion of 

a mission where only local knowledge was available.  The computation time was 

disregarded during simulations, but the manner in which to resolve this temporal problem 

was discussed in detail. 

In general, optimal control techniques were used to solve a myriad of problems 

with intricate dynamics, complex and dynamic constraints, and uncertainty.  They have 
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proved their value in solving the basic robotics’ path planning problem in a manner that 

is both feasible and optimal.  Previous discussions would have questioned the use of 

optimal control techniques with robotics as a matter of how; now the question is a matter 

when. 

B. FUTURE WORK 
The overarching goal of this research is the implementation of optimal control 

techniques in real-world, robotic path planning.  An effort is currently underway at the 

Guidance, Navigation, and Control Laboratory at the Naval Postgraduate School to 

acquire several variants of unmanned, remotely operated vehicles – both ground and 

aerial – for real-world testing of path planning tools and techniques.  Before this can be 

accomplished however, it will be necessary to advance the current research in the areas of 

complete control architecture, computation time, robustness, and effectiveness under 

complex obstacle configurations.  Of course, addressing these issues resolves only a 

portion of the entire robotics problem, which includes sensing, localization, and mapping. 

Other areas of work include analysis of these techniques for use with cooperative 

motion between multiple vehicles.  In this arena, optimal control techniques present the 

ability to resolve tactical planning scenarios and strategic allocation and scheduling 

dilemmas.  In other words, optimal control methods could decide which vehicle best 

replaces a lost asset and then determine the best trajectory for the new vehicle to use 

when replacing that asset. 
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